Global Assessment of Sentinel-3A NRT Wind and Wave Products

OSTST 2016, 2 November 2016.

Saleh Abdalla ECMWF, Shinfield Park, RG2 9AX, UK Saleh.Abdalla (AT) ECMWF.INT

© ECMWF 02 November 2016

Sentinel-3A

- Launched on 17 Feb. 2016.
- Sentinel-3A radar altimeter (SRAL) near real time (NRT) Level 2 STM Marine Product (SR_2_WAT) only.
- Sentinel-3A SRAL operates in SAR mode (exception: two days in April 2016).
- Results mainly from Cycle 9 (18 Sep. 14 Oct. 2016)
- Latest IPF change (a couple of weeks ago) is not included.

Backscatter

- Stable since late June 2016.
- Slightly lower than usual.

SRAL Backscatter is stable since late June 2016

Surface Wind Speed

- Stable since late June 2016.
- Too high by ~ 1.0 m/s.
- Slightly noisier than the other altimeters.
- Possibly due to backscatter.
- Needs some tuning.

Surface wind speed stable since late June 2016 **but** it is ~ 1 m/s too high

Global wind speed comparison between SRAL & ECMWF model (Cycle 9)

Global wind speed comparison between SRAL & buoys September 2016

Time series of SRAL wind speed Bias and SDD w.r.t. ECMWF model

SRAL wind speed bias w.r.t. ECMWF model over Cycle 9

Significant Wave Height (SWH)

- Stable since late June 2016.
- Overall, underestimates SWH by ~6 cm (very small); but
- Underestimates low SWH (< ~2 m) & overestimate high SWH (> ~5 m).
- For SWH of 1 m, the underestimation is the worst (~25%).
- Slightly noisier than the other altimeters.
- There is some indication that swell has an adverse impact on SAR SWH.
- Although the product is suitable for practical applications, it still needs some fine tuning.

SWH is (almost) stable since late June 2016 but it underestimates low SWH & overestimates high SWH

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

12

Global SWH comparison between SRAL & ECMWF model (Cycle 9)

Global SWH comparison between SRAL & buoys September 2016

SRAL SWH bias and SDD w.r.t. ECMWF model as fuctions of SWH

Time series of SRAL SWH Bias and SDD w.r.t. ECMWF model

Time series of SRAL SWH Bias and SDD w.r.t. ECMWF model

SRAL SWH bias w.r.t. ECMWF model over Cycle 9

Variation of the Relative Difference w.r.t. Swell Ratio

Variation of the St. Dev. of Difference (SDD) w.r.t. Swell Ratio

PLRM Surface Wind Speed

- Similar to the SAR mode wind speed
- Needs some tuning.

Global wind speed comparison between SRAL PLRM & ECMWF model (Cycle 9)

Concluding Remarks – SRAL NRT Products

Backscatter:

- Stable since late June 2016.
- Lower than other altimeters.

Surface Wind Speed (both SAR & PLRM):

- Stable since late June 2016.
- Too high by ~ 1.0 m/s and slightly noisier than the other altimeters.

Significant Wave Height (SWH):

- Stable since late June 2016 but slightly noisier than the other altimeters.
- Underestimates low SWH (< ~2 m) & overestimate high SWH (> ~5 m).
- Possible adverse swell impact on SAR SWH.

Although the products are suitable for practical applications, they need some tuning.