(Sub) Mesoscale characterization from multi-platform experiments: anticipating SWOT launch

Ananda Pascual IMEDEA(CSIC-UIB)

With inputs from G. Valladeau, A. Ollivier, F. D'Ovidio,
P. Bonnefond, N. Picot, J. Tintoré, S. Ruiz, L. Gómez-Navarro, A. Sánchez-Román, Y. Faugère, I. Pujol, F. Durand, R. Morrow and others

From: single scientist / single process studies... (still needed!) To: joint observing systems of our oceans & interactions

Integrated Multi-Platform Approach

Bouffard et al. (2010, 2012), Escudier et al. (2013, 2016); Juza et al. (2016); Marcos et al. (2015); Morrow et al. (2016); Ruiz et al. (2009a,b, 2012, 2015); Pascual et al. (2010, 2013, 2015); Tintoré et al. (2013); Troupin et al. (2015)

Observations complemented with numerical simulations

Potential mechanisms of vertical motion

 \circ Vertical velocities of about 45 m/day (x3 w diagnosed by mesoscale QG)

 \circ Modelling results support that front can trigger submesocale dynamics.

 Vertical velocities associated with these submesoscales structures can explain subductions observed by gliders in regions where frontogenesis occurs.

Anticipating SWOT launch

Objectives: - Contribute to SWOT CAL/VAL and ST - Improve understanding of meso and submesoscale processes and impacts on biogeochemistry

© CNES - Octobre 2012 / Illust. D. Ducros

Anticipating SWOT launch

PRE-SWOT multi-platform experiment (2018)

- 'Pocket sized' study region for quantification of the dynamic ocean exchange mechanisms

- Area relatively sparsely sampled in previous oceanographic cruises
- Few modeling and remote sensing studies.
- Small Rossby radius
- Hotspot of biodiversity (bluefin tuna spawning area)
- Low tides
- Low internal waves

Fast-phase SWOT swaths and area of study to be covered during PRE-SWOT cruise. Funding provisionally confirmed (Spanish Research Program) + BIO-SWOT (CNES)

Smaller structures in the Mediterranean Sea

Horizontal resolution needed to resolve the 1st baroclinic deformation radius (Hallberg, 2013)

Low nonlinear internal waves

Location of nonlinear internal waves observed in 250 m resolution MODIS satellite sunglint imagery acquired from August 2002 through May 2004 (Jackson et al. 2012)

Gómez-Navarro et al. (2016)

Sea Level Anomaly (color scale) Geostrophic velocity anomalies (black arrows)

Blue lines show the glider track from 15th Sept to 20th Oct 2014. The glider sampled and eddy and followed a SARAL/AltiKa track. Cotroneo et al. (2016) Gómez-Navarro et al. (2016) Aulicino et al. In prep.

Multi-platform experiment along a Sentinel-3 track

Multisensor experiment along a Sentinel-3 track May 2016

- Multisensor intercomparison allows investigation of different processes (inertial oscillations, wind effect, geostrophic currents, barotropic component...). See details in poster Sánchez-Román et al.
- More campaigns foreseen (next: Nov 2016 in 10 days)

DH vs ADT- (2D) – 50x50 km grid

Surface Dynamic height (DH) from ALBOREX (CTD) 24-26 May 2014

Absolute Dynamic Topography (ADT) from experimental CLS-CMEMS product

- Good agreement
- New CLS/CMEMS product improves statistics
- Correct front location
- Small scales not resolved

Rmsdiff: 1.82 cm Corr: 0.83 Var DH: 9.25 cm2 Var ADT: 9.82 cm2

SWOT simulator

- Application of the SWOT simulator (Gaultier et al. 2016)
- Input data: ROMS simulations
- Western Mediterranean OPerational forecasting system (WMOP) – SOCIB
- 2009 2015 hindcast
- Spatial resolution of 2 km (Juza et al. 2016)
- High resolution atmospheric forcing (3 h, 5km)
- Allows to resolve mesoscale and permits submesoscale

SWOT simulator – spectra

Pass 15 – 123 cycles average

- SSH model
- —SSH obs
- SSH obs LD filter
- SWOT simulated data resolve wavelengths > 30 km.
- Significant improvement compared to standard altimeter gridded fields that resolve wavelenghts > 150-200 km.
- Limitations of simulator and model.

BIOSWOT (PI: F. D'Ovidio) – some experimental results 2015 OSCAHR campaign (A. Doglioli)

- 1. Developing fine-scale multiplatform biophysical competences
- 2. Explore the link between fine-scale physics and phytoplankton diversity

high-throughput sampling (20' \rightarrow 3.7 to 2.4 km)

Laser Optical Particle Counter

~2 km horizontal resolution ~1 m vertical resolution

Summary

- Need of integrated multi-platform and interdisciplinary approach for understanding fine-scale processes
- Smaller, faster ocean dynamics need more rapid in-situ deployments
- Multi-platform approach helps to understand the 2D dynamical evolution
- Integration with remote sensing (SST, OC, along-track and gridded altimetry) and modeling
- SWOT multi-platform experiments prior to launch are required to prepare CAL/VAL and better characterize the area(s) of study
- Joint experiment in 2018 (SW Mediterranean Sea): Spain (PRE-SWOT, MINECO) and France (BIO-SWOT, CNES) + others?. Integrate competences (ship, ADCP, gliders, drifters, underway ctd, underway phytoplankton community, remote sensing, modeling...)

A GODAE International School in Mallorca

New Frontiers of Operational Oceanography

Thank you!

Anticipating SWOT launch

Multi-platform experiment along a Sentinel-3 track

SWOT (fast phase) + S3A tracks

Spanish EEZ

http://www.marineregions.org/gazetteer.php?p=details&id=5693

SWOT simulator – impact of noise (velocity)

SWOT simulator – impact of noise (velocity –filt)

Observations complemented with numerical simulations

From: single scientist / single process studies... (still needed!) To: joint observing systems of our oceans & interactions

DH vs ADT (2D)

Dynamic height (DH) at 5 m (ref. lev. 600 m) from CTD survey ALBOREX 26-27 May 2014 Absolute Dynamic Topography (ADT) from CMEMS/AVISO 26 May 2014 MDT from Rio et al. (2014)

Rmsdiff: 1.82 cm Corr: 0.82 Var DH: 9.25 cm2 Var ADT: 5.17 cm2

BIOSWOT – some experimental results

Pseudo-SWOT SSH (m)

Days: 21-31

Cycle 2 passes

SWOT simulator – impact of noise (SSH)

Low nonlinear internal waves

Location of nonlinear internal observed in 250 m resolution MODIS satellite sunglint imagery acquired from august august 2002 through May 2004 (Jackson et al. 2012)

From: single scientist / single process studies... (still needed!) To: joint observing systems of our oceans & interactions

BIOSWOT – some experimental results

Gómez-Navarro et al. (2016)

Observations complemented with numerical simulations

SST and surface velocity from ROMS primitive equations numerical simulations (Escudier et al., 2016)