

Regional in situ CALVAL of satellite altimeter range at non-dedicated calibration sites

M. Cancet, P. Bonnefond, B. Haines, C. Watson, F. Lyard, O. Laurain, D. Cotton, J. Bruniquel, J. Benveniste

- OSTST meeting - La Rochelle, France -

Main objectives:

- ✓ Altimeter performances: SSH stability (drifts), SSH bias between the altimetry missions
- \checkmark Products improvement: Evaluation of new corrections and parameters (orbit, etc...)

Global CALVAL

- Intra/intermission comparisons: \checkmark
 - \rightarrow at crossover points and along the tracks (boxes)
- mplementarity between \rightarrow large patterns, geographically correlated errors, open ocean performances
- \checkmark Comparisons to tide gauge global networks:
 - \rightarrow altimeter drifts, global coastal performances

Local CALVAL

- Comparisons to georeferenced tide gauges at a few calibration sites:
 - \rightarrow altimeter absolute bias, drifts, geographically correlated errors, local coastal performances
 - \rightarrow limitation: only for the altimeters that fly over the calibration sites (mainly Jason suite)

Regional CALVAL method

Combination of:

Absolute CALVAL: Direct comparison between altimeter and tide gauge SSH (point C).

- \checkmark Only for satellite flying over the calibration sites.
- ✓ Directly comparable to the absolute bias estimates computed by the local in situ calval groups (Corsica, Harvest, Bass Strait, Gavdos...)

Offshore CALVAL: Computation of the bias on offshore passes (points A & B)

- ✓ Following a succession of accurate mean sea surface profiles, combining several missions
- ✓ Using a high resolution mean sea surface to link the *in situ* and altimetry SSH, when available (MSS otherwise)

Regional CALVAL method

Generic method:

- → Calibration of missions on new orbits
- ✓ After an orbit change (ex: interleaved TP/Jason-1/Jason-2)
- \checkmark For satellites on orbits without dedicated calibration sites
- → Calibration of non-repetitive orbits
- ✓ Missions on non-repetitive or drifting orbits (ex: CryoSat-2, SARAL/AltiKa)

Applicable to any calibration site: Corsica, Harvest Platform, Bass Strait, Gavdos...

Regional CALVAL method

Implemented:

in Corsica (Senetosa & Ajaccio) for Topex, Jason-1, GFO, Jason-2, Envisat, SARAL/AltiKa

- ✓ Jan et al, 2003
- ✓ Cancet et al, 2012

at Harvest for Jason-2, Envisat, SARAL/AltiKa

at Bass Strait for Jason-2, Envisat, SARAL/AltiKa

+ Sentinel-3A at the 3 sites (MPC-S3)

+ CryoSat-2 (SAR mode) in Harvest (SCOOP)

Altimeter SSH regional CALVAL

Jason-2 and Sentinel-3A CALVAL results

Jason-2 and Sentinel-3A CALVAL

Calibration site of Corsica

- Senetosa (OCA/CNES)
 - 4 tide gauges (2 couples of twin instruments) since 1998
 - > Under a TP/Jason-1/2/3 ground-track (085)
- Ajaccio (SHOM)
 - ➤ 1 tide gauge since 2002
 - Under an Envisat ground-track (130)

Altimetry data

	Jason-2	Sentinel-3A		
Product version	GDR-D	MPC-S3 / EUMETSAT PDGS		
Period	Cycles 1-298 07/2008 – 08/2016	Cycles 5-9 04/2016 – 09/2016		
Frequency	20Hz	20Hz		
Altimeter mode	LRM	SAR		
Ionosphere	GIM	GIM		
Wet troposphere	ECMWF model (land contamination)	ECMWF model (land contamination)		
Sea State Bias	SSB ku	3.5 % of SWH		
Tides	COMAPI regional model (CNES)			
DAC	High resolution global simulation (LEGOS)			

S3: Sometimes, 21 "20 Hz" Ku-band measurements.

Jason-2 absolute CALVAL

Jason-2 absolute bias in Senetosa

Jason-2 GDR-D SSH bias estimates (m) at Senetosa – Track 085

02/11/2016

Sentinel-3A absolute bias in Senetosa and in Ajaccio

10

Conclusions on Jason-2 and Sentinel-3A CALVAL

- ✓ First calibrations of Sentinel-3A in Corsica (Senetosa and Ajaccio)
- ✓ Same work at Harvest and Bass Strait is underway

 \rightarrow Jason-2 on interleaved orbit, SARAL on drifting orbit and Jason-3 could be monitored as well...

13

Altimeter SSH regional CALVAL

Some new perspectives for regional CALVAL

 \rightarrow Analysis of the impact of the sea state on the altimeter SSH

An illustration with Jason-2

(SCOOP ESA project)

- Analysis of the altimeter SSH bias sensitivity to the major sea state components
 - Inputs:
 - Altimeter SSH bias
 - Sea state parameters: HS *(SWH)*, HS0, HS1, HS2, HS3, wave direction, skewness, period...
 - Statistical analysis:
 - Correlations
 - Principal Components Analyses (PCA)

- \rightarrow regional CALVAL method
 - \rightarrow IOWAGA model/buoy

An illustration with Jason-2...

 \rightarrow Computation of the absolute SSH bias for the overflying Jason-2 tracks (2008-2015)

Harvest site

- ✓ Mainly governed by swell (open ocean)
- ✓ Tide gauge SSH time series entirely reprocessed and checked between 2002 and 2015 (JPL) + sea state correction

Bass Strait site

- ✓ Mainly governed by wind (enclosed basin)
- ✓ Quality controlled tide gauge SSH time series between 1992 and 2015 (UTAS)

⁽Haines et al, 2012)

⁽Watson et al, 2013)

- An illustration with Jason-2...
 - IOWAGA model hindcast database (IFREMER)
 - Harvest : regional grid, 0.16° x 0.16°, 3 hours
 - Bass Strait : global grid, 0.5° , 3 hours
 - Parameters available in the IOWAGA hindcast database:
 - Total HS (SWH)
 - HS0: wind waves
 - HS1, HS2, HS3: main swell components

 \rightarrow Evaluation of the sensitivity of the altimeter SSH bias to these parameters

With SSB correction

0.01

0.20

3 4

0.2

05 09

Harvest: Correlations between all the parameters 05 10 15 20 25 30 BIAS C BIAS occurence HS HSO: Not significant (too few occurences) HSO: Not sign HS1 HS2 \rightarrow SSB non-corrected alti bias mainly correlated with HS and HS1 (primary swell) **-IS3** \rightarrow SSB-corrected alti bias not significantly correlated with any of the parameters

02

0.5

Another way to look at it: Principal Component Analysis (PCA)

Another way to look at it: Principal Component Analysis (PCA)

- An illustration with Jason-2...
 - Very experimental analyses, but clearly show:
 - The dependency of the altimeter SSH bias to the sea state parameters when no SSB correction is applied to the altimeter SSH data (expected result).
 - No more dependencies with HS at Harvest when the altimeter SSH are corrected from SSB \rightarrow « ideal case »
 - Still some dependencies with HS/HS0 at Bass Strait when the altimeter SSH are corrected from SSB but further analyses would be necessary (mooring data).
 - Next step: application to CryoSat-2 SAR data in Harvest
 - → Dependency of the SAR mode SSH data to the SWH ?
 - → Assessment of the SSB correction

Conclusions and perspectives

- \checkmark Regional CALVAL = Link between the local and global CALVAL methods
- \checkmark Some promising results for analyzing the SWH impact on altimeter SSH

 \rightarrow Jason-2 on interleaved orbit, SARAL on drifting orbit and Jason-3 could be monitored as well...

24

Thank you !

Sentinel-3A absolute bias in Senetosa and in Ajaccio

- OSTST meeting - La Rochelle, France -

Jason-2 regional CALVAL

Jason-2 regional bias in Senetosa and Ajaccio

Jason-2 bias (mm)	No ocean dynamics correction		With ocean dynamics correction (global DAC + COMAPI tide)			
Cycles 1 to 298 (GDR-D)	Mean	Std	Nb of cycles	Mean	Std	Nb of cycles
Track 085 (absolute method)	-6.7 ± 2.1	35.7	277	-9.1 ± 2.2	37.4	277
Mean regional bias in Senetosa	-10.9	39.0	284	-11.2	41.9	284
Mean regional bias in Ajaccio	-2.1	39.6	267	17.6	41.4	267

- Very stable results in Senetosa, both in absolute and regional configurations
- ➢ Still unexplained 2-cm difference in Ajaccio, but some tests showed it is linked to the tide correction → under investigation

Bass Strait: Comparison to 8 years of HS

In situ data (tide gauge) not corrected for sea state

Jason-2 SSH bias	Correlation with HS			
Without SSB corr.	-0.69			
With SSB correction	-0.41			

- → Anti-correlation between HS and J2 SSH bias when no SSB applied
- → Bass Strait J2 SSH bias seems to be still sensitive to HS when SSB correction applied

BUT

It would be interesting to reproduce the exercise \rightarrow using the mooring data (closer to altimetry ground-track)

 \rightarrow With a higher resolution wave model

