Altimeter absolute bias estimates from Bass Strait, Australia

<u>Christopher Watson</u>^{1,2} (cwatson@utas.edu.au) Benoit Legresy^{3,2} Matt King¹ John Church⁴ Jack Beardsley² Will Hextall²

- 1. Discipline of Geography and Spatial Sciences, University of Tasmania, Australia.
- 2. Integrated Marine Observing System
- 3. CSIRO Oceans and Atmosphere Flagship, Hobart, Australia.
- 4. 53 Salamanca Square, Battery Point, Australia.

OSTST2016: 31 Oct – 4 Nov, La Rochelle, France

Australian Cal/Val Overview

Bias Drift (see poster):

Global analysis of altimeter v tide gauges: advocates for a reduction in the GMSL rate from ~3.2 to ~2.6-2.9 mm/yr (Watson et al., 2015).

Absolute Bias (this talk):

Bass Strait and Storm Bay sites, altimeter v in situ SSH. In situ SSH = tide gauge + moored T/S/P sensors + GPS buoys

In Situ SSH Generation

Tide gauge (RSL)	Anthrank	Alth	AAAAA	whyth	A.A.A.A.]-6-J-6-J-6-J-6-J-6-J-6-J-6-J-6-J-6-J-6-	\mathcal{M}	f <u>~</u> \f-
Tide gauge (VLM removed)	A A A A A A A A A A A A A A A A A A A		\mathcal{A}	᠕ᠰᡐᡧᠰ᠕	\mathcal{A}	$\beta \beta \gamma \beta$	γ	∱≞Ą₽
Mooring Deployments (Different datums)	A - A - A - A - A - A - A - A - A - A -		∫-↓-√-в		$\mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} $		o brfrf	ſ∽∖∱E
Tide gauge RSL (tidally corrected to mooring location) Mooring RSL (offset to TG datum)	ANAAAAAA	\mathcal{A}	/+./-\ B /-\/	www.	44444	Adadad	ᢣ᠕᠕	₽₩₩
GPS Buoy Deployments (ITRF2008)	$\sqrt{1}$	√\ ²	√ 3		\\\^4 \\\ ⁵ \\	6 7	∧ ⁸	• ا
In Situ SSH ON DATUM	Angerta			M	A A A A A	hhhh	****	9 JAJE

Vertical Land Motion

Vertical Land Motion

5

RHPT

BUR2

GPS Buoy Processing

- Still utilising a lightweight, portable buoy design.
- Antenna height ~550 mm above water level.
- Buoys now separated during deployment, with one at the historical CP and the other at the S3A CP (7 km separation).

Buoy SSH - In Situ SSH

- Episodic GPS buoy SSH defines the absolute datum of the in situ record
- Two buoys (red, blue) typically deployed at any one time
- Standard deviation of this series ~24 mm (mean offset removed in Figure)

Absolute Bias at Bass Strait (TG)

- TOPEX result dependent on VLM applied at TG (0.4 mm/yr over 20y = 8 mm)
- Jason-1 GDR-C high...
- Systematic structure evident in Jason-2...

Absolute Bias at Bass Strait (TG)

- Switch to Jason-1 GDR-E lowers our bias, but still high (5 cm).
- Note Jason-1 high over each formation flight period.

Absolute Bias at Bass Strait (TG)

• Absolute bias for Jason-3 GDR-T ~2 cm lower than Jason-2 GDR-D.

Absolute Bias at Bass Strait (Mooring)

- Reduced noise against the in situ mooring data.
- Temporally correlated signal in Jason-2 still evident.
- Standard deviation for both series ~24 mm.

Absolute Bias at Bass Strait (Mooring)

• Formation flight period shows J3 GDR-T ~2 cm lower than J2 GDR-D.

Relative Bias: J3 GDRT – J2 GDRD

Relative Bias: J2 GDRD – J1 GDRE

Wet Delay: Altimeter – cGPS @ TG

- Altimeter data here is extrapolated linearly from the CP to the GPS (~53 km) located at the TG (GPS: BUR1, BUR2).
- Difference is consistently negative implying GPS measuring drier / altimeter wetter.
- If you believe the GPS, the absolute bias moves closer to 0 in each case (and ~ -2 cm for Jason-3).
- BUT variability here seems too high. Further investigation of the GPS series is required.

Other Missions at Bass Strait

- First data from our S3A CP just recovered. S3A site ~7 km from our Jason-series historical CP. SSH difference typically within ±5 cm, dominated by tides.
- First mooring for our S3B CP just deployed. See poster by Legresy et al...

SWOT Opportunities

Possible inland corner cube array?

2 x Ferries, 2 x cargo ships, each crossing (320 km) once per day. Underway T/S, SSH? obs

Bass Strait historical and S3A/B CPs -> shallow moorings

Within the model domain of the ACCESS met model (1 km res)

Conclusions

Mission	Cycles	Absolute Bias	Stdev [TG(Mooring)]
TOPEX-A	1 -> 235	+07 mm	25 mm
TOPEX-B	236 -> 365	+19 mm	27 mm
Jason-1 GDR-E	1 -> 259	+47 mm	31 mm
Jason-2 GDR-D	1 -> 298	+19 mm	32 (24) mm
Jason-3 GDR-T	1 -> 17	+01 mm	27 (23) mm

* Solutions adopt VLM of -0.8 mm/yr at the tide gauge

- 1. Jason-3 GDR-T performing well at Bass Strait. Absolute bias ~ 2 cm lower than Jason-2 GDR-D and insignificantly different from zero.
- 2. Jason-1 GDR-E remains high. Investigating iono and SSB differences, problems with in situ data are considered unlikely.
- 3. GPS wet delay appears dryer than the radiometer for all missions at Bass Strait. Effect would be to lower absolute bias estimates by 1-2 cm, but further investigation required.
- 4. Non-time averaging systematic errors are likely to be order ~ 15 mm.

Questions?

<u>Christopher Watson</u>^{1,2} (cwatson@utas.edu.au) Benoit Legresy^{3,2} Matt King¹ John Church⁴ Jack Beardsley² Will Hextall²

- 1. School of Land and Food, University of Tasmania, Hobart, Australia.
- 2. Integrated Marine Observing System
- 3. CSIRO Oceans and Atmosphere Flagship, Hobart, Australia.
- 4. 53 Salamanca Square, Battery Point, Australia.

OSTST2016: 31 Oct – 4 Nov, La Rochelle, France

Spares

Mooring Inventory

GPS Buoy Processing

