Along-Track Zero Padding for the Processing of Unfocused SAR Altimetry Waveforms

TECHNISCHE UNIVERSITÄT DARMSTADT

Christopher Buchhaupt (TU Darmstadt, Germany) Luciana Fenoglio (University of Bonn, Germany) Matthias Becker (TU Darmstadt, Germany)

1 | Christopher Buchhaupt | Along-Track Zero Padding for the Processing of Unfocused SAR Altimetry Waveforms | 24/10/17

Picture: ES

I. Motivation

II. Methodology

- Choice of Surface Locations
- Region of Interest and Retracking

III. Results

- Mean Differences of 1 Hz Geophysical Parameters
- Precision of 1 Hz Geophysical Parameters
- Wave-Number Spectra

IV. Conclusion

- Zero-padding prior to the range compression improves quality of geophysical parameters
- Due to windowing and discretization altimeter signals are strictly bandlimited
- Squaring the signal prior to averaging doubles the bandwidth which causes aliasing
- Zero-padding is an ideal bandlimited interpolation method solving this issue
- Can zero-padding improve SAR mode also along-track ?

6 | Christopher Buchhaupt | Along-Track Zero Padding for the Processing of Unfocused SAR Altimetry Waveforms | 24/10/17

- For each burst:
 - Zero-padding prior along track FFT increases surface sampling rate by a factor of two
 - Standard 20 Hz surface location cannot observe these additional beams
 - Adding of additional surface locations to increase the dataset to 40 Hz
- For each surface location:
 - Waveforms now are "truly" oversampled
 - Signal to noise ratio is improved

I. Motivation

II. Methodology

- Choice of Surface Locations
- Region of Interest and Retracking
- III. Results
 - I Hz Mean Differences of Geophysical Parameters
 - I Hz Precision of Geophysical Parameters
 - Wave-Number Spectra
- IV. Conclusion

Methodology Surface Locations

- CryoSat-2 burst-packs contain four bursts each
- Surface location for 20 Hz data is placed between burst 2 and 3
- For oversampled 40 Hz surface locations are placed between burst 1/2 and 3/4
- This preserves consistency of SAR and RDSAR
- 1 Hz data have the same location and time tag for 20 Hz and 40 Hz for SAR and RDSAR
- Implementation is straightforward

ROI and Retracking

- The region of interest is the region from 2.5°S to 25.5°S and from 160°W to 85°W (Pacific Box) from October 2012 to October 2013
- Waveforms are retracked using a fast convolution based model called SINC*
 - RDSAR is retracked with SINC2
 - SAR is retracked with SINCS
 - No PTR approximation used

* Buchhaupt et al., 2017: A Fast Convolution Based Waveform Modell for Conventional and Unfocused SAR Altimetry, Advances in Space Research CryoSat-2 Issue, Accepted

- I. Motivation
- II. Methodology
 - Choice of Surface Locations
 - Region of Interest and Retracking

III.Results

- 1 Hz Mean Differences of Geophysical Parameters
- 1 Hz Precision of Geophysical Parameters
- Wave-Number Spectra

IV. Conclusion

Results Mean SLA Differences

- Differences are formed w.r.t.
 20 Hz SAR data
- No sea state biases applied
- Differences of averaged 1 Hz values are calculated
- RDSAR shows significant sea state dependent differences
- No significant difference between 20 and 40 Hz SAR solution

Results Mean Difference SWH

- RDSAR shows significant sea state dependent differences
- SAR data are similar to each other with just maximal 5 cm difference
- No significant difference between 20 and 40 Hz RDSAR solution

Results Mean Difference Sigma0

 Small differences between SAR and RDSAR

 No differences between the solutions of the two data rates in SAR and RDSAR

Results **SLA Precision**

TECHNISCHE UNIVERSITÄT DARMSTADT

- Estimated standard deviations are not helpful as the correlation between the 40 Hz SAR values is not known
- Absolute values of the differences between two consecutive 1 Hz SLA 's are used
- Effect of SLA slope is minimized as differences from two different datasets are used
- Median and skewness are a coarse measure for the difference in precision
- SAR 40 Hz SLA has a small gain in precision
- RDSAR data are both less precise

SSH Wave-Number Spectra

- Average Wave-Number Spectra are calculated with 6800 20 Hz values or 13600 40 Hz values each
- The DTU15 MSS serves here as a reference
- Both RDSAR datasets show similar performance
- SAR outperforms RDSAR
- SAR 40 Hz is significantly closer to DTU15 at higher frequencies
- SAR 40 Hz shows a bump at ca. 10 cycles per km

SWH Wave-Number Spectra

- Both RDSAR datasets show similar performance
- SAR outperforms RDSAR
- SAR 40 Hz shows a better performance than SAR 20 Hz at higher frequencies

Results

Sigma0 Wave-Number Spectra

- Both RDSAR datasets show similar performance
- RDSAR outperforms SAR below ca. 10 cpkm
- SAR 40 Hz shows a better performance than SAR 20 Hz at higher frequencies

- I. Motivation
- II. Methodology
 - Choice of Surface Locations
 - Region of Interest and Retracking

III. Results

- 1 Hz Mean Differences of Geophysical Parameters
- 1 Hz Precision of Geophysical Parameters
- Wave-Number Spectra

IV. Conclusion

Conclusion

- Zero-Padding of the bursts before the along-track FFT leads to additional beams not available in standard 20 Hz surface locations
- A surface sampling rate of 40 Hz allows to use these additional beams
- Small improvement of precision for SLA (ca. 10-20%) is observable for 40 Hz unfocused SAR data
- Spectral analysis shows significant improvements for SWH, SSH, sigma0 derived from the 40 Hz SAR

