SAR-Mode altimetry over the Antarctic ice sheet

Aublanc J. ; Moreau T. ; Thibaut P. : **CLS** Boy F. ; Picot N. : **CNES** Remy F. ; Blumstein D. : **LEGOS**

Introduction

- Ice-sheet surfaces (Antarctic & Greenland) have been monitored by radar altimeters since the launch of GEOS-3 (1975)
- Since then, several altimeter missions have provided a near-continuous survey of the ice-sheet topography, all of them using a conventional Low Resolution Mode (LRM)
- Surface topography mapping from conventional altimeters suffers from various sources of uncertainties :
 - □ Penetration of the Ku-band signal into the snowpack disrupts the measured waveform
 - Inability to retrieve fine topographic variations due to the large radar footprint (12 to 20km diameter depending on mission)
 - □ Range estimation errors due to surface slopes (idem)
- Sentinel-3A is the first altimeter mission operating on SARM over ice sheets (100%). Improvements regarding the conventional LRM are expected and will be investigated.

SAR Altimetry Workshop - 31 October 2016 - La Rochelle

- 2 -

Introduction

- Sentinel-3A measurements over Antarctica have been analysed from April 13th 2016 to May 9th 2016.
- The assessment is essentially done with measurements located over the flat surface of lake Vostok, where Cryosat-2 acquired 10 days of data in SARM on November 2014.

Introduction

- Sentinel-3A measurements over Antarctica have been analysed from April 13th 2016 to May 9th 2016.
- The assessment is essentially done with measurements located over the flat surface of lake Vostok, where Cryosat-2 acquired 10 days of data in SARM on November 2014.

Presentation content

- 1) Penetration effect on the alimeter measurements
- 2) Surface elevation assessment
- 3) Impact of the surface slope on the surface elevation
- 4) Results over fine-scale topographic variations

SAR Altimetry Workshop - 31 October 2016 - La Rochelle

Impact of the penetration effect **Computation of mean Sentinel-3A SARM and P-LRM** Waveform waveforms over lake Vostok analysis Sentinel3 measurements selected for the average waveform Surface Mean waveform over Vostok lake (from 806 individuals WF) elevation SAR assessment P-LRM 0.8 Power 9.0 Surface slope effect Normalized I 6.0 78°5 0.2 Fine scale topography 0.0 20 120 40 60 80 100 range gate 100°E 104°E 108°E

SAR Altimetry Workshop - 31 October 2016 - La Rochelle

- 6 -

LEGOS

cnes

CENTRE NATIONAL D'ÉTUDES SPAT

	Surface elevation assessment						
Waveform analysis	Altimeter distance is computed from the waveforms with a threshold retracker dedicated to the ice-sheet surfaces (TFMRA).						
	In P-LRM, the retracking point is set at a lower level compared to the one used for ocean (25% vs 50% of WF maximum power) in order to mitigate the penetration effect						
Surface elevation assessment ➤ In SARM, the retracking point is set at the same level as for ocean (80% of maxim power).							
Surface slope effect	Computation of the surface elevation: H = Orbit - altimeter_distance - internal path delay - Σ (geophysical corrections)						
Fine scale topography	Surface elevation estimated on SAR and P-LRM is compared with three DEM available over Antarctica:						
	ERS-1 DEM (Bamber et al, 2009): Computed from ERS-1 and ICESat data. Time Stamp: 2004						
	□ Cryosat-2 DEM (Helm et al, 2014): Computed from Cryosat-2 data (LRM & inSAR modes). Time Stamp: 2014						
	□ ICESat DEM (DiMarzio et al, 2007): Computed from ICESat data. Time Stamp: 2003 to 2005						
	SAR Altimetry Workshop - 31 October 2016 - La Rochelle						

Assessment over lake Vostok Mean biases between the surface elevation computed from Waveform Sentinel-3A & Cryosat-2 SARM and three DEM analysis Mean biases with DEM (cm) S3A SAR CS-2 SAR Surface autumn 2016 summer 2014 elevation assessment **ERS1 DEM** +15.2 +3 CS-2 DEM +12.6+1.5ICESat DEM +2.4-7.3 Surface slope effect Both missions very consistent with DEM. Cross-over analyses will permit to better compare altimeter missions. On-going study. Fine scale topography Need in-situ measurements (GPS data) to perform a better assessment Good elevation accuracy computed from SAR & P-LRM data over lake Vostok SAR Altimetry Workshop - 31 October 2016 - La Rochelle LEGOS cnes - 12 -

ENTRE NATIONAL DISTUDIE COA

Slope induced error on altimeter measurements

Slope induced error on altimeter measurements

Cryosat-2 bias with DEM, function of surface slope

Sentinel-3A bias with DEM, function of across-track surface slope

Sentinel-3A bias with DEM, function of along-track surface slope

Analysis over the margins with Cryosat-2

Conclusions & perspectives

Promising first results of the Doppler altimetry over ice-sheets with both Cryosat-2 and Sentinel-3a missions:

- Elevations very consistent with DEMs
- □ Waveform leading edge weakly impacted by volume scattering
- □ Negligible sensitivity to along-track slopes (as expected)
- □ Ability to retrieve fine scale topographic variations (to be confirmed)

Scientific publication is currently being drafted with Cryosat-2 results

List of planned studies to complete the assessment of SARM over ice-sheets:

- Cross-over analyses between Cryosat-2/Sentinel-3A in SARM (May 2016 acquisitions) over Vostok
- □ Retracking improvement (estimation of the WF geometric parameters to study penetration effect)
- □ Study of the fine scale topography over the margins
- Repeat-track analyses of Sentinel-3A
- Multi-mission comparisons (in particular Ku / Ka)
- □ Ice-sheet elevation assessment over the whole continent in comparison with ICESat & GPS

Additional slides Par Sa

SAR Altimetry Workshop - 31 October 2016 - La Rochelle

Cryosat-2 waveforms comparison lake Vostok (red) / Ocean (blue)

TFMRA Retracking

Assessment over lake Vostok

Mean bias and standard deviation over Vostok in SARM & PLRM

Mean biases between the surface elevation computed from Sentinel-3A SARM & Sentinel-3A PLRM and three DEMs

	S3A	SAR	S3A PLRM		
	Mean bias	Standard dev.	Standard dev. Mean bias Standard		
ERS1 DEM	M +15.2 33.1		+14.7	33	
CS-2 DEM	+12.5	16.8	+11.6	16.1	
ICESat DEM	+2.4	36.4	+2	37.4	

SAR Altimetry Workshop - 31 October 2016 - La Rochelle

Location of the Sentinel-3A data used for the slope analysis Along-track < 0.025% Across-track slope < 0.025% **DEM from Bamber 2009 DEM from Bamber 2009** 60°W 60°E 60°E 60°W 80°W 80°E 80°W 80°E 100°W 100°E 100°W 100°E 120°W 120°E 120°W 120°E 140°W 160°W 180° 160°E 140°E 140°W 160°W 180° 160°E 140°E 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000 0 o Height (m) Height (m) SAR Altimetry Workshop - 31 October 2016 - La Rochelle LEGOS cnes - 29 -CENTRE NATIONAL D'ÉTUDES SPAT

Theoritical bias function of surface slope

Pente (%)	0.01	0.025	0.05	0.075	0.1	0.15	0.2	0.25
Pente (°)	0.0057	0.0143	0.0286	0.043	0.0572	0.086	0.115	0.143
simulation (m)	0.003	0.02	0.08	0.19	0.33	0.75	1.31	2.05
équation (m)	0.003	0.02	0.08	0.18	0.33	0.73	1.3	2.03
équation (m)	65	163	325	488	651	976	1302	1627

Pente (%)	0.3	0.4	0.5	0.75	1	1.25	1.5	2
Pente (°)	0.172	0.229	0.286	0.43	0.573	0.716	0.859	1.146
simulation (m)	2.95	5.24	/	1	1	1	1	1
équation (m)	2.93	5.21	8.14	18.31	32.55	50.85	73.23	130.17
équation (m)	1953	2604	3255	4882	6510	8137	9764	13018

SAR Altimetry Workshop - 31 October 2016 - La Rochelle - 30 -

