

The new ESA/GOCE geoid model from the direct method and its impact on the computation of the Mean Dynamic Topography

<u>S.L. Bruinsma</u>, J.C. Marty, J.M. Lemoine CNES - Department of Terrestrial and Planetary Geodesy Toulouse, France

<u>S. Mulet</u>, M.H. Rio CLS Ramonville Saint-Agne, France

Ch. Förste, O. Abrikosov GFZ German Research Centre for Geosciences Potsdam Potsdam, Germany

Data

LAGEOS-1/2 SLR data:

• 1985 – 2010 of GRGS release 2 normal equations to degree/order 30

GRACE GPS-SST and K-band range-rate data:

• Feb 2003 – Dec 2012 of <u>GRGS release 3</u> normal equations to degree 175

[®] One GRACE/LAGEOS normal equation up to d/o 175, reduced above degree 130 before accumulating with GOCE normal equations

+

GOCE data:

- SGG data (Txx, Tyy, Tzz, Txz) from 01 November 2009 20 October 2013
- weighting per measurement (based on RMS of residual), cos-latitude weighting
- normal equations for each SGG component (4) up to degree/order 300
- application of a (120 8) s band-pass filter for all four SGG components

•The SGG signal is filtered-out below degree ~ 45

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Normal equation combination scheme of EGM-DIR-5

New frontiers of Altimetry – Lake Constance, Germany - October 2014

EGM-DIR-5 vs EIGEN-53C: degree amplitude differences

EGM-DIR-3 compared with EGM2008: spatial

New frontiers of Altimetry – Lake Constance, Germany - October 2014

EGM-DIR-4 compared with EGM2008: spatial

Geoid height differences (meter) EGM2008 vs. EGM-DIR-4

Lake Constance, Germany - October 2014

EGM-DIR-5 compared with EGM2008: spatial

Geoid height differences (meter) EGM2008 vs. DIR5

Validation: GOCE orbit fit

Dynamic orbit computation 60 arcs, arclength = 1.25 days

Mean RMS values in cm of the orbit fit residuals

Gravity field model / max degree	120	180
EGM2008	4.0	2.8
ITG-Grace2010s	3.3	1.7
GOCO03s	3.2	1.6
EGM-DIR-1	3.9	2.4
EGM-DIR-2	3.5	2.1
EGM-DIR-3	3.2	1.6
EGM-DIR-4	3.2	1.6
EGM-DIR-5	3.1	1.5

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Comparison with EGM2008: GPS/leveling

Comparison of geoid heights (RMS in cm of GPS-Leveling minus model-derived geoid heights)

(Max d/o=360)	EGM2008	DIR2*	DIR3*	DIR4*	DIR
Europe (1234)	27.0	33.6	30.5	28.4	27.
Germany (675)	14.2	28.5	21.2	16.8	15.
Canada (1930)	22.9	31.0	27.8	24.7	23.
USA (6169)	31.8	36.8	35.2	32.9	32.
Australia (201)	23.6	32.6	28.1	26.3	24.
Japan (816)	27.2	32.8	31.3	30.1	29.

*model to d/o 240 extended with EGM2008 to d/o 360

Used GPS/Leveling data sets:

- **USA**: (Milbert, 1998)
- **Canada:** (M. Véronneau, personal communication 2003, Natural Resources Canada)
- Europe/Ĝermany: (Ihde et al., 2002)
- **Australia:** (G. Johnston, Geoscience Australia and W. Featherstone, Curtin University of Technology, personal communication 2007)
- Japan: (Tokuro Kodama, Geospatial Information Authority of Japan, personal
- communication 2013)

Model validation using drifter data - Method

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Model validation using drifter data

How does GOCE help improve the ocean circulation estimate ?

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Using GOCE improves MDT computation like CNES-CLS MDT METHOD

MDT first guess with GOCE

First guess used for the CNES-CLS13 MDT computation (GOCE data)MDT=MSS CNES-CLS11 – EGM-DIR-R4OPTIMALLY FILTERED

MDT first guess with GRACE

The CNES-CLS13 MDT

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Difference of CNES-CLS13(GOCE) – CNES-CLS09(GRACE) MDTs

Improvement of the first guess using GOCE involves:

→ More consistency between scales seen by satellite and in-situ data, thus small scales are better resolved

 \rightarrow Huge improvement near the coast especially in Indonesia and Bahamas

Positive impact on altimeter data assimilation in the Mercator-Ocean system

Difference between the MDT currently used at Mercator-Ocean for SLA assimilation and the CNES-CLS13 MDT SLA innovation computed during the latest Mercator-Ocean reanalysis run (GLORYS2V3) = information given by the dynamic of the model that correct the observations

Similarities between the two plots mean that the use of the CNES-CLS13 MDT will lead to improvements (the altimeter SLA assimilation into the Mercator-Ocean forecasting system

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Improvement of the Meridional Overturning Circulation in the North Atlantic

□ Combination of MDT with SLA and T/S profiles to compute 3D geostrophic currents and then transport.

□ Mean interior geostrophic transport calculated over 2006

- 7 Sv when using the CNES-CLS09 MDT
- 12 Sv with the CNES-CLS13 MDT.

The **RAPID-MOCHA** array (Kanzow et al., 2007) gives an **independent estimate of -14 Sv** thanks to moorings that monitor temperature, salinity and currents.

Possibility to directly compute Absolute Dynamic Topography

Map of SSH_c2 - **GOCE** (DIR5) 125 km ; 12 September 2012

Map of SSH_c2 - **GRACE** (ItgGrace2010s) 125 km ; 12 September 2012

H (cm)					H (cm)								
-60	-40	-20	0	20	40	60	-60	-40	-20	0	20	40	60

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Gravity field model EGM-DIR-5: summary and conclusions

- Model to d/o 300 constructed with LAGEOS, GRACE and GOCE data;
- Best satellite-only model when comparing with GPS/leveling data, POD, and geostrophic current velocities;
- <u>Formal</u> accumulated geoid error at degree 200 (100 km): 0.8 cm (mission objective: 1.0 - 2.0 cm). Estimation over Germany: 1.8 cm
- The geostrophic current comparisons reveal that GOCE can provide accurate current information at 100 km scale; at 80 km, only the zonal component is accurate enough.

>OSTST meeting

Bruinsma et al., GRL 2014

21

Significant improvement of the oceanic circulation estimate thanks to GOCE

- Improvement of surface circulation but also transport estimate (AMOC)
- Improvement of high resolution products
 - Combined MDT like CNES-CLS
 - GOCE geodetic MDT is more consistent with drifters than EGM2008 geodetic MDT between 100 and 200 km of resolution
- Positive impact for SLA assimilation in numerical model
- Possibility to map directly SSH geoid height (instead of computing MSS and MDT) at ≈ 100 km

New frontiers of Altimetry – Lake Constance, Germany - October 2014

The GOCE only MDT (First Guess)

The CNES-CLS13 MDT

