Toward an improved estimation of errors in L3/L4 DUACS/AVISO Sea Level products

Different product Levels

Page 2

Level 3&4 products can be directly used for different oceanography applications

Level 3 & 4 Oceanography product Homogeneous and error reduced empiricaly (HF, ...)

Different product Levels

Page 3

Level 3&4 products can be directly used for different oceanography applications

Level 2 from space agencies *Non homogeneous*

55

Efforts are done to describe the Level 2 produts errors.

Ex: Jason2 error budget on L2 product (Philipps et al, OSTST 2012

	Error		Speci	ificatio	ns		Erro	r (<10 c	lays)	CO 11
	budget	OGDR	IG	DR		GDR	OGDR	ÌGDR	GDR	GOAL
for	Altimeter range		>1.7	7 cmab	<u>C</u>		>1.	6 - 1.7	cm	1.5 cm ^{a,b,c}
ctions eight	lonosphere	1 cm₫⊆	0.5 cm ^{d,c}				>1 cm / >0.2 cm			0.5 cm ^{d,c}
correc ace h	Sea State Bias	3.5 cm	2 cm			>0.4 cm			1 cm	
and a a surf	Dry roposphere	1 cm	0.7 cm				0.4- 0.7 cm	0.3-0.7 cm		0.7 cm
neters w se	• Wet troposphere	1.2 cm				>0.2 cm			1 cm	
Param	Rms Orbit (radial component)	10 0	cm®	2.5 c	m	1.5 cm	>3.7 cm	>1.7 cm	>1.0 cm	1.5 cm
ter ters	Significant wave height	10% or 50 cm	1	0% or 5	0 c	m ^f		13 cm		5% or 25 cm ^f
Altime arame	Wind speed	1.6 m/s		1.5 m	n/s			1 m/s		1.5 m/s
` d	Sigma0 (absolute)		0.7 dB		0.11 dB			0.5 dB		
Raw	sea surface height	11 cm	3.9	cm ^A	3	.4 cm ⁴	> 4.2 cm ⁴ /-	> 2.6 cm ^A - 2.8 cm	>2.1 cm ^A - 2.4 cm ^B	2.5 cm ⁴
Final	sea surface height	?	ī	?		?	< 5.0 cm [⊆]	< 4.1 cm ^c	< 4.0 cm ^c	

a Ku-band after ground retracking b Averaged over 1 sec c Assuming 320 MHz C-bandwidth d filtered over 100 km e real time doris onboard ephemeris f whichever is greater h non filtered value i filtered over 300 km A Computed with , Assuming that errors in the table are uncorrelated (which is not the case). B from formation flight phase (jason-1/ Jason-2) C from cross-over computations of jason-2 data

Different product Levels

Page 4

Level 3&4 products can be directly used for different oceanography applications

Few information about the errors associated to the L3/L4 products are available whereas it is an important input for different applications (ex: data assimilation)

→We give a first estimate based on different diagnostics

Level 3 & 4 Oceanography product Homogeneous and error reduced empiricaly (HF, ...)

Different kinds of errors

Page 5

Errors can be described for different spatial/temporal scales

Overview

Page (

Level 3 along-track products:

- 10-day signal error estimation

Level 4 maps products:

- mesoscale errors estimation

Description of the errors observed with the DUACS DT 2014 products

Page 13

L3 1Hz errors estimation

Page 14

• High frequency signal : 10-day crossover statistics [2013], DUACS 2014 products

Along-track error deduced from X statistics (cm)	J2	AL	C2
Level 2 (no EO reduction)	3.7	-	-
Raw Level 3	3.2	2.9	3.0
65km filtered Level 3	2.6	2.6	2.5

Contains also residual 10-day ocean variability

Does not take into account the correlated error

Link with crossover properties different from an altimeter to the other

L3 1Hz errors estimation

Page 15

High frequency signal : 10-day crossover statistics [2013]

Page 16

Page 20

"two-sat-merged" maps are compared with along-track products not used in the mapping.

- Analysis of the variance of the differences for wavelengths ranging 500-65 km
- → Definition of the L4 mean errors for mesoscale signals:
 - Assume error mainly on map products : smoothed and missing signal
 - Does not take into account the correlated errors (strong assumption ! since altimeter standards are quite uniform for the different altimeters)

Page 21

Page 22

Page 23

High variability areas : part of the mesoscale signal is missing in the map product (altimeter sampling & map smoothing)

Coastal areas : Higher errors linked with geophysical corrections quality (tides, internal waves)

SSALTO DUACS

L4 errors estimation

Page 25

Var(MSLA-SLA) [λ=65-500km] (CM ²)	TPN	J1N
Reference area	1.4	1.6
D>200km ; Var < 200 cm ²	4.9	5.1
D>200km ; Var > 200 cm ²	32.5	30.8
D<200km	8.9	9.7

"two-sat-merged" maps are compared with along-track products not used in the mapping.

Reference area = very low variability area —Minimal error on map products = 1.2 cm

SSALTO DUACS

L4 errors estimation

Page 26

Var(MSLA-SLA) [λ=65-500km] (CM ²)	TPN	J1N
Reference area	1.4	1.6
D>200km ; Var < 200 cm²	4.9	5.1
D>200km ; Var > 200 cm²	32.5	30.8
D<200km	8.9	9.7

"two-sat-merged" maps are compared with along-track products not used in the mapping.

Low variability areas : —Mean error = 2.2 cm

High variability areas :

-Mean error = 5.6 cm

Coastal areas :

- -Mean error = 3 cm
- higher in western boundary regions

Page 2

Var(MSLA-SLA) reduction [λ=65-500km] (%)	TPN	J1N
D>200km ; Var < 200 cm ²	-2.1%	-1.9%
D>200km ; Var > 200 cm ²	-9.9%	-5.0%
D<200km	-4.1%	+2.8%

Impact of the DUACS 2014 reprocessing:

Reduction of the Level 4 errors vs DUACS 2010 version

Low variability areas : —Mean error reduction = 2 %

High variability areas : —Mean error reduction = 5 to 10%

Page 28

- We are improving the **L3** (along-track) error description:
 - Improved quantification of the high frequency (< 10 days) errors :
 - 2.5cm on 65km low-pass filtered along-track
 - Error reduced by more than 50% between L2 and filtered L3.
- We are improving the **L4** (maps) error description:
 - Use independent altimeter measurements for quantification of the errors at mesoscale:
 - errors ranging 2.2 (low variability) to 5.6 cm (high variability areas)
 - Quantification of the error reduction with previous products (DT2014 vs DT2010):
 - Reduction ranging 2% (low variability) to 5-10% (high variability areas)

Page 29

- We need to go further:
 - L3: toward an "instantaneous" error including sea state variability (SWH, SSB, ...)
 - L4: complete the diagnostics with independent measurements (ie. in situ)
 - L3/L4: take into account other kind of errors (i.e. larger spatial/temporal scale)

Thank you for your attention