

LOU

Sea level in the Arctic Ocean from satellite radar altimetry

Tom Armitage, Prof. Duncan Wingham, Andy Ridout Centre for Polar Observation and Modelling, University College London, U.K.

Contents

- Arctic Ocean data
- Trends in Arctic sea level over ~18 years
 Whole basin (up to 82N)
 - Western Arctic (Beaufort sea)
- Beaufort Gyre freshwater storage
- Trends in ocean geostrophic circulation
- Western Arctic sea level seasonal cycle

Data

- Can cross-calibrate between satellites in overlap periods
 - After Giles et al. (2012)
- >18 years of data in the Arctic
- CS2 and Envisat agree well
- Envisat & ERS-2 less so:
 - Need to process REAPER data

Data

- Can cross-calibrate between satellites in overlap periods - After Giles et al. (2012)
- >18 years of data in the Arctic
- CS2 and Envisat agree well
- Envisat & ERS-2 less so:
 - Need to process REAPER data —

Data

- Can cross-calibrate between satellites in overlap periods
 After Giles et al. (2012)
- >18 years of data in the Arctic
- CS2 and Envisat agree well
- Envisat & ERS-2 less so:
 - Need to process REAPER data

95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14

Arctic sea level change

Arctic sea level change

Western Arctic sea level change

- Beaufort Gyre associated with predominant anti-cyclonic atmospheric circulation in region
- Ekman transport causes downwelling and accumulation of fresh water
 - Circulation strengthened during 2000s
 - Loss of sea ice may be changing atmosphere-ocean mom. transfer
- Possible association with North Atlantic salinity anomalies

- Beaufort Gyre associated with predominant anti-cyclonic atmospheric circulation in region
- Ekman transport causes downwelling and accumulation of fresh water
 - Circulation strengthened during 2000s
 - Loss of sea ice may be changing atmosphere-ocean mom. transfer
- Possible association with North Atlantic salinity anomalies

- Beaufort Gyre associated with predominant anti-cyclonic atmospheric circulation in region
- Ekman transport causes downwelling and accumulation of fresh water
 - Circulation strengthened during 2000s
 - Loss of sea ice may be changing atmosphere-ocean mom. transfer
- Possible association with North Atlantic salinity anomalies

Tsamados et al. (2014)

 Increase in FW storage (using Giles et al. (2012) method): ~7,000-8,000km³ between pre- and post-'spin-up'

- Increase in FW storage (using Giles et al. (2012) method): ~7,000-8,000km³ between pre- and post-'spin-up'
- Ocean mass content has increased since 2010, not much change in sea level – FW content decrease

Trends in ocean geostrophic circulation 1996-2013

$$u = -\frac{g}{f} \frac{\partial \eta}{\partial y}$$
$$v = \frac{g}{f} \frac{\partial \eta}{\partial x}$$

UCL

- Can also use altimeter data to look at seasonal cycles of sea level
- Take monthly means instead of annual
- De-trend time series, find [Jan, Feb, Mar...] mean sea level

- Can also use altimeter data to look at seasonal cycles of sea level
- Take monthly means instead of annual
- De-trend time series, find [Jan, Feb, Mar...] mean sea level

Month

Month

Wind curl (10⁻⁶ms⁻²)

- Seasonal sea level controlled primarily by the seasonal wind cycle
- Also see effects of seasonal fresh water input

Seasonal cycle (2004-2011)

。 06

Seasonal cycle (2004-2011)

Conclusions

- Radar altimeters are a powerful tool for Arctic ocean observations
- Arctic Ocean sea level rise agrees with global MSL rise but large regional variations
- Western Arctic level peaks in 2011, slight drop since
 - Accompanied by up to 1cm/s per year increase in ocean geostrophic current between 2002-2011
 - Storage of ~7,000-8,000km³ of freshwater 2002-2010, possible release since 2011
- Double peaked seasonal cycle in Western Arctic
 - Wind driven and FW input driven

References

- Giles et al. (2012), "Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre", *Nature Geoscience*, 5, 194–197
- Tsamados et al. (2014), "Impact of Variable Atmospheric and Oceanic Form Drag on Simulations of Arctic Sea Ice", Journal Physical Oceanography, 44, 1329-1353
- GRACE ocean data were processed by Don P. Chambers, supported by the NASA MEaSUREs Program, and are available at <u>http://grace.jpl.nasa.gov</u>.

