

Seafloor Topography and Ocean Tides from Satellite Altimetry

Ed Zaron

Department of Civil and Environmental Engineering Portland State University

Outline

- 1. Motivation and methodology
- 2. Assembling the pieces:
 - topography, altimeter data, and their error models
- 3. An idealized identical twin experiment
- 4. Results for Sea of Okhotsk
- 5. Discussion

Motivation: uncertain topography in some areas

Smith and Sandwell (JGR 1994)

- nearly global coverage
- complex relationship between topography and gravity

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Motivation: uncertain topography in some areas

Marks and Smith, Radially symmetric coherence between satellite gravity and multibeam bathymetric surveys, Mar. Geophys. Res., 33(3), 223-227, 2012.

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Objective

To assimilate altimetric observations into a dynamical model for tides in which bottom topography is a control variable.

Precedents:

- Storm surge modeling on the European shelf (Lardner et al).
- Topography from SSH assuming large-scale dynamics (Losch and Wunsh).

OSTST meeting

► Topography from tidal currents, SSH (Hirose; Mourre et al).

Methodology

The approach builds on OTIS, the Oregon State Tidal Inversion System, developed by Egbert and Erofeeva.

$$-i\omega U + f \times U + gH\nabla \eta + C_d |u_f| U/H = -gH\nabla \Phi^{astro} + \lambda^U \quad (1)$$
$$-i\omega \eta + \nabla \cdot U = 0 \quad (2)$$

$$H = H_0 + \lambda^H \tag{3}$$

Minimize a weighted integral of squared misfits to dynamics and data,

$$J(H, U, \eta) = \int \lambda^{U} C_{UU}^{-1} \lambda^{U} + \int \lambda^{H} C_{HH}^{-1} \lambda^{H} + \sum_{data} \frac{\epsilon^{2}}{\sigma^{2}}.$$

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Methodology

Technical developments:

- ► Inter-constituent coupling (same *H* at each tidal frequency).
- Separate representers for obs. of Re/Im parts (*H* is real-valued).
- New spatial covariance models for *H*.
- Picard iteration for nonlinearity.
- Optimizations for large multi-core machine (64 cpus, 256GB RAM).

Where might this approach work?

Requirements for success:

- Accurate tidal SSH ($\sigma_\eta \approx 1\%$)
- *H* less accurate than η ($\sigma_H \approx 10\%$)
- Accurate barotropic dynamics:
 - no baroclinic tide
 - no wetting and drying
 - bottom drag not too influential

This talk focusses on the Sea of Okhotsk, where tides are large, altimetry is plentiful, and topography is uncertain.

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Assembling the pieces: Topography

Question: What topography to start with? How to describe its spatial error covariance?

There are errors in the bathymetric data at control points. Smith (1993) and Marks and Smith (2008) note:

- positional errors, pre-GPS navigation
- sound speed errors
- blunders

In lieu of a complete error model, intercompare gridded topographies.

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Assembling the pieces: Topography

Comparison of gridded topography to JAMSTEC multibeam bathymetry [m].

source	mean	std	mean Δ	std Δ
SS15	1079	160	0.8	4.9
SS11	1097	165	19	71
ETOPO1	1111	157	33	79
DBDB2v30	1080	168	1.7	63
GEBCO	952	111	-127	84

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Assembling the pieces: Evolution of SS over time

RMS differences reduced from 180m to 20m over time.

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Assembling the pieces: DBDB2 versus SSv15

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Assembling the pieces: DBDB2 versus SSv15

OSTST meeting

New frontiers of Altimetry – Lake Constance, Germany - October 2014 Assembling the pieces: Comparison of multiple topographies

Variogram along the cruise tracks in central Sea of Okhotsk from JAMSTEC.

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Topography: Summary

The following topographies were compared:

- Smith & Sandwell v. 6, 9, 11, 13, and 15
- GEBCO
- DBDB2v30
- ETOPO1

Conclusions:

- SS converging over time.
- DBDB2 and GEBCO are very smooth.
- ► Use ETOPO1 (hand-edited SSv9) as prior.
- Build topo. error model from DBDB2 minus SSv15.

Assembling the pieces: Altimetry

Assembling the pieces: Altimetry

Inflate σ from harmonic analysis by 30%. Use data from cross-overs.

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Application to the Sea of Okhotsk

- Approx. 3km resolution
- M₂, S₂, K₁, and O₁
- Quasi-linear drag, $C_d |u_f| U/H$, following Snyder et al (1979)
- Open boundary conditions from TPXO7.2-ATLAS

Tide Model	RMSE [cm]
TPXO7.2-Atlas	1.3
DBDB2	12
ETOPO1 ($C_d = 1.5 \times 10^{-3}$)	5.4
ETOPO1 ($C_d = 3.0 \times 10^{-3}$)	6.2

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Application to the Sea of Okhotsk

Prior model has large error.

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Application to the Sea of Okhotsk

TPXO7.2 fits data within nominal uncertainty.

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Purpose: Demonstrate the importance of the error model for the topography.

The topography correction, λ^{H} , is computed from a spatial error covariance model and an adjoint sensitivity, but the latter depends on the η and *U* fields:

$$\lambda^{H}(x) = \int C_{HH}(x, y) \left(-g\mu \cdot \nabla \eta + C_{d} |u_{f}| \frac{U \cdot \mu}{H^{2}} \right) dy \qquad (4)$$

OSTST meeting

Adjoint sensitivity is dominated by regions where $\nabla \eta$ is large.

(Notation: $x = (\theta, \phi)$ is lat.-lon. coordinate)

New frontiers of Altimetry – Lake Constance, Germany - October 2014

New frontiers of Altimetry – Lake Constance, Germany - October 2014

New frontiers of Altimetry – Lake Constance, Germany - October 2014

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Development of Spatial Error Covariance Model

Factorize C_{HH} in terms of a variance and correlation:

$$C_{HH}(x,y) = \sigma_H(x)c_H(x,y)\sigma_H(y)$$
(5)

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Sea of Okhotsk (ETOPO1 + altimetry)

Sea of Okhotsk (ETOPO1 + altimetry)

Topographic adjustments explain about 50% of the SSH error variance.

Sea of Okhotsk (ETOPO1 + altimetry)

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Conclusions & Further Questions

Summary:

- Relatively small corrections to bottom topography can explain a significant fraction of the discrepancy between observed and modeled tides.
- The topographic inversion problem is strongly nonlinear.
- Spatial structure of errors in gridded topographies is not well characterized.
- ► The estimated topography depends strongly on the assumed spatial covariance, *C*_{*HH*}.

Questions:

- I-d idealized experiments show importance of small-scale roughness for de-tuning resonance. What are implications for the first guess?
- Where are other good sites for application?

Observability in a 1-d idealized model:

- Nonlinear dependence on first guess.
- No corrections where $|\nabla \eta| = 0$.
- \blacktriangleright \longrightarrow multiple constituents are required.
- Realizability condition: $\lim \sigma_H/H \to const.$ as $H \to 0$.
- Relative *H* error is 5 to $10 \times$ relative η error.

 $\epsilon_{\rm H}$ and ϵ_{η} are relative errors in H and η as estimated by data assimilation.

Estimation error decreases as data spacing D goes to zero. L_c is the half-width of the topographic bump.

Estimation error varies strongly with tidal wavelength. Errors are worst at near-resonance.

1-d Experiment: shelf + isolated bump

1-d Experiment: shelf + isolated bump

1-d Experiment: shelf + isolated bump

Note: $\sigma_H(x) = \alpha H(x)^p$, with p > 1 is required in order to suppress the sensitivity on the shelf.

1-d Experiment: shelf + isolated bump

Error Model for Topography

Topography "error": $\delta H = \text{ETOPO1} - \text{DBDB2}$