

- Tidal geocenter motion previously ignored when developing ocean tide models from satellite altimetry.
 - Since first Geosat model, e.g., Cartwright and Ray (1991).
- Especially important when comparing ocean tide heights observed by satellite altimetry with in-situ measurements.
- Tide gauges and ocean bottom pressure recorders observe displacement of sea surface with respect to ocean bottom.
- Satellite altimeters observe sea surface height with respect to frame origin of orbital position of the satellite.
 - Natural satellite orbital motion is about the center of mass of the total Earth system.
 - Center of mass of the total Earth system, including ocean tides, is frame origin of altimetric sea surface heights...at least for tides.

Satellite Altimeter Observations of Ocean Tides

- Altimeter observations, H_A:
 H_A = H₀ + H_L + R_{cm}
- **H**_o = Ocean tide height relative to crust.
 - E.g., tide gauge observation.
 - Reflects mass of displaced water only.
 - H_L = Radial load tide.
 - Ocean tide mass load causes displacements in Earth's crust.
 - R_{CM} = Geocenter motion (radial).
 - Ignored for > 20 years.
 - Ocean tide mass causes relative motion between center of mass of total Earth system and crust-fixed frame.
- Body tide.
 - Typically modeled: model accuracy \leq 1 mm.
 - Error smaller than geocenter motion.
 - Ignored here.

October 29, 2014

Ocean Surface Topography Science Team Meeting, Lake Constance, Germany

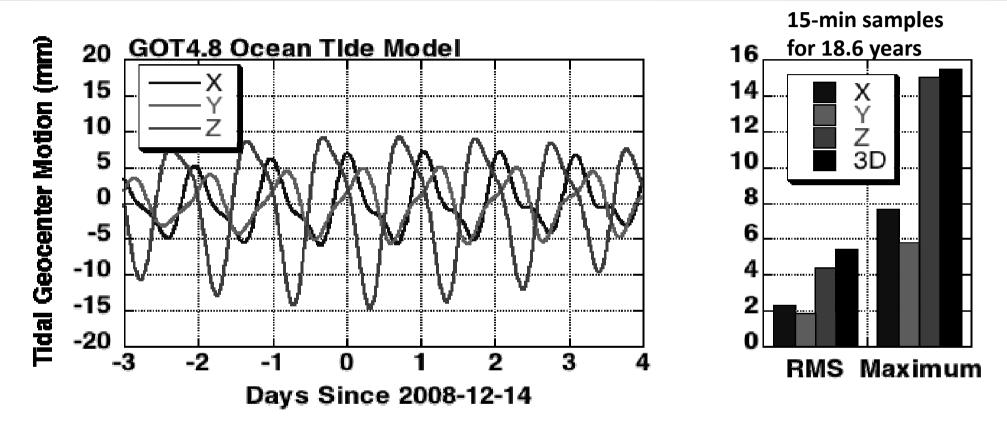
- No impact from ignoring tidal geocenter motion for most altimeter users.
 - **IF** applying an altimeter-based model to the altimeter sea surface heights.
 - These users need consistent model of ocean tide height relative to frame origin of orbital position, H_A .
- Users requiring accounting of tidal geocenter motion for correct extraction of ocean tide height relative to Earth's crust, H_o:
 - **Geodesists**: need model of mass redistribution from only oceans.
 - Apply to models of tidal potential, Earth orientation parameters, load tide displacements, geocenter motion.
 - Geocenter error primarily affects degree 1 spherical harmonic component.
 - Impact on tidal potential (e.g., GRACE) and Earth orientation models is small.
 - Ocean tide modelers: need consistency between altimeter and in-situ measurements.
 - In-situ measurements are relative to Earth's crust.

• Model ocean tide as spherical harmonic expansion.

$$- H_0 = \Sigma_n H_n$$

• Altimeter observations can then be expressed:

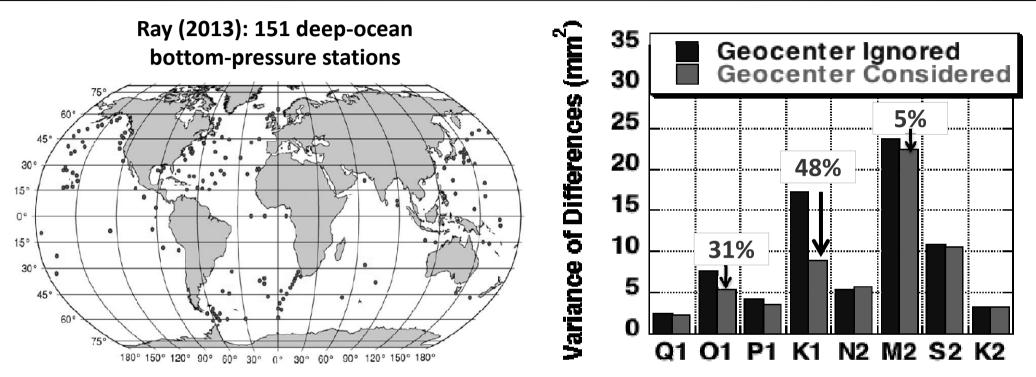
$$- H_{A} = H_{0} + H_{L} + r_{cm}$$


$$= \Sigma_{n}H_{n} + \Sigma_{n}(h'_{n}K_{n})H_{n} - K_{1}H_{1}$$

$$= \Sigma_{n}(1+h'_{n}K_{n})H_{n} - K_{1}H_{1}$$

$$= \Sigma_{n>1}(1+h'_{n}K_{n})H_{n} + (1+(h'_{1}-1)K_{1})H_{1}$$
Geocenter
Contribution

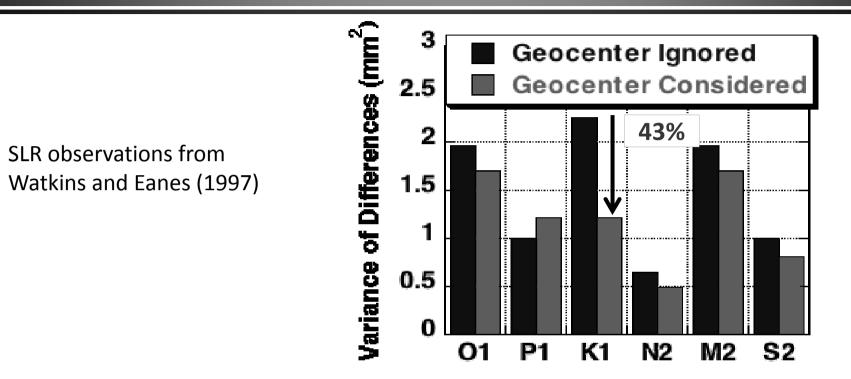
- h'_n = Load Love numbers typically published in crust-fixed frame.
- K_n = Known scaling factor (function of Earth constants).
- Iterative approaches used to extract ocean tide height relative to crust (H_0) from altimeter measurements (H_A) .
- Geocenter motion easily accounted using effective degree 1 load Love number: (h'₁ – 1).


- 3-D tidal geocenter motion as large as 16 mm, RMS < 6 mm.
 - Largest effect is along along Earth's spin axis (Z).
 - Largest contribution from diurnal tides, especially K1 and O1.

October 29, 2014

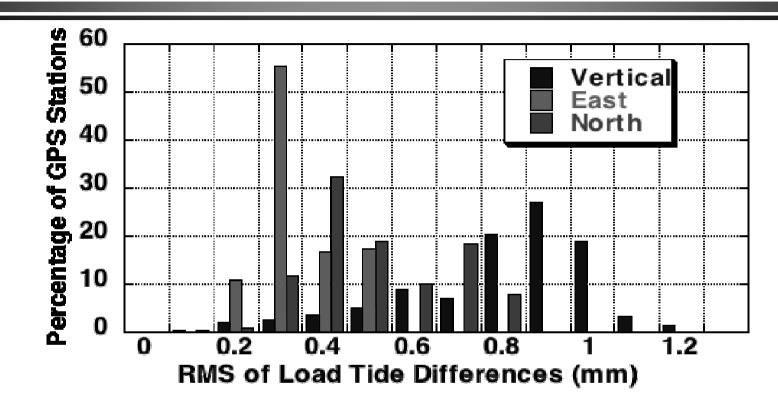
Ocean Surface Topography Science Team Meeting, Lake Constance, Germany

Comparison of Altimeter Model to In-Situ Bottom Pressure Recorder Observations



- Consider GOT4.10 ocean tide model with and without consideration of geocenter contribution.
 - Mostly empirical model based upon altimetry.
- Significantly improves comparisons between altimeter and in-situ observations.
 - Most significant improvement for O1 and K1 components.

Tidal Geocenter Variations: GOT4.8 Model Prediction Versus SLR Observations

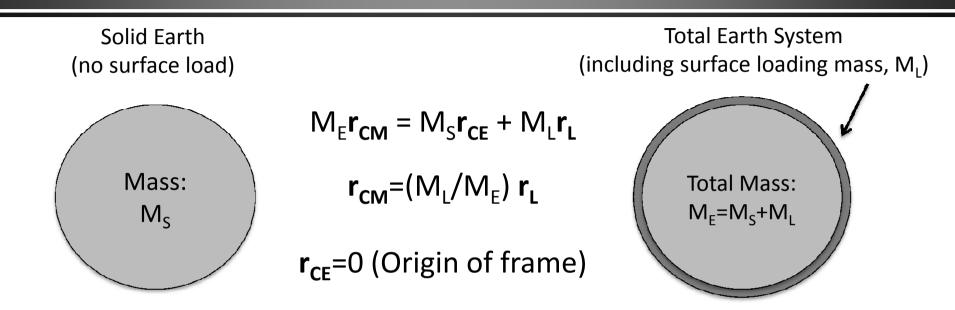

- Degree-1 terms of ocean tide linearly correlated with predicted contribution to geocenter motion.
 - Degree-1 components of GOT4.8 ocean tide height model amplified by 15-22% when accounting for geocenter motion in altimeter observations.
 - Phase changes by < 3 degrees.

• Improved agreement for 5 of 6 primary tidal components.

October 29, 2014

Ocean Surface Topography Science Team Meeting, Lake Constance, Germany

- Load tide model computed for ~3800 global GPS stations using GOT4.8 ocean tide model.
 - Differenced predicted effects from ocean tide height model with and without geocenter variations considered.
 - More than 20% have RMS of vertical differences > 1 mm.


- Accounting for tidal geocenter motion in altimeter ocean tide models provides improved recovery of ocean tide height relative to crust of Earth.
- Evidenced through improved comparison between:
 - Altimeter and in-situ observations of ocean tides.
 - Predicted and observed tidal geocenter motion.
- Improvements primarily in:
 - Diurnal tidal components, especially K1 and O1.
 - Degree 1 spherical harmonic components of ocean tide models.
 - Amplified by 15-22%.
 - Explains improved prediction of tidal geocenter motion.
 - Impact on predicted load tide displacements of stations on crust < 1.5 mm.
- No impact on most users of altimetry sea surface heights.
 - These users need consistent model of ocean tide height relative to frame origin of orbital position (including radial load tide and geocenter motion, as observed).
- Negligible impact on gravity recovery from space (e.g., GRACE) and Earth orientation parameter predictions.
 - Small impact on degree 2 and higher spherical harmonic components of ocean tide model.

Back-Up Slides

Geocenter Motion

- Geocenter motion: Relative motion between center of mass of total Earth system (r_{см}) and solid Earth (r_{се}) (or center of figure).
 - Center of figure (CF) is measurable from station positions.
 - CM-CF motion is 2% larger than CM-CE motion.
- Geocenter motion results from redistribution of surface loading mass (e.g., oceans, atmosphere, hydrology).
 - Center of mass of solid Earth compensates for surface mass redistribution to maintain center of mass of total Earth system in inertial space.