## **Cross-Calibration Approach**



- Difference Jason-2 and SARAL measurements at crossover locations.
- Use 17 months of data since SARAL launch.
  - SARAL GDR-T: Cycles 1-15
  - Jason-2 GDR-D: Cycles 172-225
- Within each SARAL cycle, ~290 inter-satellite additional crossover points for every hour between measurements.
  - With 15 cycles, additional ~4300 crossovers for each hour apart.
- Only use crossovers < 6 hours apart.



**Global Coverage of Crossovers** 





- ~26000 inter-satellite crossovers < 6 hours apart, over 15 cycles.
- Good global coverage despite low number samples.

October 29, 2014

Ocean Surface Topography Science Team Meeting, Lake Constance, Germany

## Data Noise





- Std. Dev. of differences linearly dependent on time between measurements.
- Provides proxy for data noise in two measurement systems.
  - e.g., 10 cm for SWH, and 7 mm for radiometer wet correction.

October 29, 2014

## Significant Wave Height (SWH)





- Weighted linear regression to scatter between measurements from two systems.
  - Weighting function:  $1/\Delta t$
  - $\Delta t$  = Time difference between measurements.
  - Using only measurements with Δt
    < 6 hours.</li>
- Jason-2 and SARAL have very good agreement in SWH.
  - Bias: < 10 cm.
  - Slope: 0.99
  - Std. Dev.: 10 cm

## Backscatter: Sigma0





- Expect systematic differences between Ku- and Ka-band altimeters.
  - Bias = -5.46 dB
  - Slope: 1.20
  - Std. Dev.: 0.22 dB.
- Use linear regression as proxy for Ka- to Ku- calibration function.
- Facilitates application of Jason-2 Ku-band wind speed algorithm (Collard).
  - Referred to as "calibrated" SARAL wind speed.

## **Altimeter Wind Speed**





- As expected, improved consistency when using same Jason-2 wind speed algorithm (Collard et al.).
  - Not a measure of relative accuracy.





- Relative drift between Jason-2 altimeter and ECMWF wind speeds.
  - ~0.1 0.2 m/s offset at least since cycle 180.
- Calibrated SARAL wind speed provides similar average of differences to model.
- SARAL has higher standard deviation of cycle averages.





- Differences have dependency on wind speed.
  - Similar dependency on calibrated wind speed.
- Perhaps related to SARAL two- versus Jason-2 three-frequency radiometers.

October 29, 2014

Ocean Surface Topography Science Team Meeting, Lake Constance, Germany





- Remaining dependency on SWH and wind speed after applying SARAL GDR-T sea state bias model.
  - GDR-T model derived from only 6 months of data, and independent of wind speed.

#### Impact of Calibrating Wet Troposphere and Residual SSB (A + B\*SWH + C\*SWH<sup>2</sup> + D\*SWH\*U)



- Most significant variance reduction (9%) from calibrating SARAL radiometer wet troposphere correction.
- Relative bias of -4 to -6 cm (SARAL measuring low), depending on SSB model.
- Residual dependence on SWH of 0.3% to 0.7% of SWH.

October 29, 2014

### Sea Surface Height Anomaly: Inter-Satellite Consistency





- Most significant improvement from calibrating radiometer wet troposphere correction.
- Small improvement from additional SSB correction to SARAL data.
  - 4-parameter models provide best consistency.
  - Residual dependency on both
    SWH and Wind.
  - Very small but detectible improvement from using calibrated wind speed.

#### Calibrated Inter-Satellite Cross Over Variance (Relative to SARAL GDR-T)





- |latitudes| > 30 degrees: Variances reduction from calibrating radiometer wet troposphere correction.
- |latitudes| > 50 degrees: Additional variance reduction from residual SSB model that includes wind speed and quadratic SWH term.

October 29, 2014

Ocean Surface Topography Science Team Meeting, Lake Constance, Germany

#### Calibrated SARAL ONLY Cross Over Variance (Relative to SARAL GDR-T)





- Variance reduction at |latitudes| > 30 degrees.
  - Primarily from calibrating wet troposphere correction.
- Exposes sub-optimal parametric residual SSB model.
  - Perhaps better to use collinear variance reduction (e.g., Feng, Vandemark et al).



- Jason-2/SARAL crossovers provide powerful inter-satellite calibration approach.
  - Good global distribution, and sampling of wind/wave conditions.
  - Despite relatively few crossover measurements available.
- Residual wind-dependent inconsistency in SARAL radiometer wet troposphere correction.
- Inconsistency between Jason-2 and SARAL altimeter wind speeds.
- Residual sea state bias error (~0.5% of SWH) in SARAL GDR-T products.

| Parameter                       | Std. Dev. of Cross Over Differences |  |
|---------------------------------|-------------------------------------|--|
| Significant Wave Height         | 0.10 m                              |  |
| Backscatter Coefficient         | 0.22 dB                             |  |
| Radiometer Wet Correction       | 0.68 cm                             |  |
| Sea Surface Height (GDR-T)      | 3.08 cm                             |  |
| Sea Surface Height (Calibrated) | 2.81 cm                             |  |



# **Back-Up Slides**

#### Radiometer Wet Correction: Dependency on Wind Speed (Excluding cycles 5-7)





Dependency on wind speed observed with GDR or Calibrated Wind Speed.

### Radiometer Wet Correction: Dependency on Wind Speed (Including cycles 5-7)





 Dependency on wind speed observed with GDR or Calibrated Wind Speed.



5

Ω

10

ECMWF Wind Speed (m/s)

15

• Jason-2 wind speed has smallest bias versus ECMWF.

20

10

ECMWF Wind Speed (m/s)

5

15

- Calibrating SARAL wind speed reduced bias at high wind conditions.

25

• SARAL GDR-T wind speed has smallest standard deviation.

2

Π

-1

-2

-3

-4

-5

-6

0

Bias (Altimeter - ECMWF) (m/s)

25

20



#### Residual SSB = A + B\*SWH + C\*SWH<sup>2</sup> + D\*U\*SWH

| A<br>(m) | B<br>(m/m⁻¹) | C<br>(m/m²) | D<br>(m/(m. m/s)) | Residual SSH<br>Variance (cm <sup>2</sup> ) |                            |
|----------|--------------|-------------|-------------------|---------------------------------------------|----------------------------|
| -0.043   |              |             |                   | 12.89                                       | GDR-T                      |
| -0.047   |              |             |                   | 11.78                                       | Wet. Calibration           |
| -0.056   | 0.0030       |             |                   | 11.62                                       | SSB Model 1                |
| -0.063   | 0.0046       | -0.0017     | 0.0007            | 11.48                                       | SSB Model 2                |
| -0.065   | 0.0067       | -0.0016     | 0.0005            | 11.45                                       | SSB Model 3<br>(Cal. Wind) |

- Models are in addition to SSB model on GDR-T product.
  - Subtracted from sea surface height anomaly (added to range).
- SARAL measuring SSH low relative to Jason-2 by 4-6 cm.
  - Potential residual dependence on SWH of ~0.5%.
  - Impact of residual SSB on inter-satellite bias is ~2 cm.
  - Calibrated wind speed provides slightly improved consistency.
    - Increases SWH dependency by 0.2%\*SWH (from 0.0046 to 0.0067).