Absolute calibration of radar altimeters On lake Issykkul from GPS field campaigns

J-F Crétaux, S. Calmant, V. Romanovski, P Bonnefond, S. Tashbaeva, M. Bergé-Nguyen, A. Arsen , P. Maisongrande, C.K Shum, D. Moreira, T Pavelsky, V. Ballu, L. Testut, R. Abarca-Del-Rio, F. Perosanz, F. Lyard

OSTST, 2014, Konstanz, Germany

Legos (FR) IWPB (KG) OCA (FR) CPRM (BR) OSU (USA) UNC (USA) UNC (USA) Univ La Rochelle (FR) GRGS (FR) DGEO (CH) Cal / Val of radar altimetry on the Lake Issykkul

Framework project:

Initiated in 2004 by a NATO project between France and Kyrgyzstan Continued in 2008 by a CNES/TOSCA project for contribution of France to C/V of altimeters: FOAM Headed by P. Bonnefond including ocean, lakes and rivers sites

Cretaux et al., 2009, 2011, 2013

Absolute calibration on lakes: principles and interest (2/2)

Why lake Issykkul?

- Waves, Electromagnetic Bias, tides and inverse barometer negligible
- In-Situ data available (level gauges, weather stations) and vessels (Multur, Storm, Meridian)
- Large enough for Multi satellite calibration on one site
- Assessment of performance of retracking algorithms
- densification of absolute calibration sites in continental area / oceanic sites
- Reference lake surface for height and slope validation of the future SWOT mission

Principal sources of errors

Wet tropospheric correction Antenna height errors (velocity of the vessel) GPS errors Seiches over lakes

Permanent GPS stations

Weather stations

1 nominal and 1 interleaved T/P (JS1-2-3) track, 1 GFO track, 6 Envisat (Saral) tracks, 8 Icesat-1 tracks, 4 sentinel-3 tracks

Error reductions by successives improvements on the ground procedures (1/3)

After 2009, GPS measurements are collected along the track at the time of the pass of the satellite

Error reductions by successives improvements on the ground procedures (2/3)

Cycle 3 / 242 (JS2/JS1)

Averaged differences of 2-3 cm for 4 campaigns. GPS derived WTC is choosen after 2009

Altimeter bias of Envisat Satellite from two field campaigns in 2009

The absolute bias is comprised between 62.1 and 63.4, using the *Ice-1* retracking algorithm, and between 46.9 and 51.2 cm with the *ocean* retracking algorithm with a standard deviation of 3.7 cm

Error reductions by successives improvements on the ground procedures (3/3)

Distance (m) between GPS antennsa onboard the vessel

Altimeter bias of AltiKa from the field work in June / July 2014

Altimeter bias of AltiKa from different Cal / Val sites

Comparison Altimetry / In Situ

Mean lake surface from GPS campaigns (2004-2010) & Icesat data (2003-2009)

•I nternal consistency of the GPS measurements: 2 cm RMS at the cross over points after the removal of the hydrological signal

• Icesat mean vertical profiles calculated over 8 tracks with 2 cm RMS w.r.t GPS profiles at the cross over points

Conclusions and perspectives

Absolute calibration of altimeters:

 ✓ From first experiment in 2004 until the last campaign in June 2014, the Lake Issykkul became an altimetry C/V site for multi-mission purposes

✓ Many solutions have been carried out to mitigate the various sources of errors (Wet tropo remains the main problem)

✓ Absolute bias of past missions in agreement with ocean C/V sites including Saral

Use of satellite altimetry for lakes:

✓ Different sources of errors have been identified over each mission (atmospheric corrections, retracking algorithms)

✓ Long term multi-satellite lake monitoring at 3 cm accuracy is reachable

✓ C/V of Sentinel-3 and Jason-3

✓ Calculation of a mean lake surface using all existing data in the framework of SWOT C/V