Improving the temporal and spatial resolution of water level time series over Po River (Italy) obtained by satellite altimetry

M. J. Tourian¹, T. Qin¹, A. Tarpanelli², L. Brocca², T. Moramarco² and N. Sneeuw¹

1 Institute of Geodesy, University of Stuttgart, Germany 2 Hydrology Research Group @ CNR IRPI, Perugia, Italy

tourian@gis.uni-stuttgart.de

New frontiers of altimetry

27-31 October 2014, Lake Constance, Germany

ENVISAT 46.0[°] N 45.5[°] N 108 65/0358-294 401 337 129 45.0[°] N 315 7.5[°]E 8.0[°]E 8.5[°]E 9.0[°]E 9.5[°]E 10.0[°]E 10.5[°]E 11.0[°]E 11.5[°]E 12.0[°]E 12.5[°]E 13.0[°]E

ENVISAT

temporal resolution

positive aspects

river is a dynamic system

asynchronous tracks

GIS

Improving the spatio-temporal resolution of water level time series

temporal resolution

positive aspects

river is a dynamic system

asynchronous tracks

GIS

Improving the spatio-temporal resolution of water level time series

positive aspects

river is a dynamic system

asynchronous tracks

Improving the spatio-temporal resolution of water level time series

positive aspects

river is a dynamic system

asynchronous tracks

GIS

Improving the spatio-temporal resolution of water level time series

positive aspects

river is a dynamic system

asynchronous tracks

GIS

Improving the spatio-temporal resolution of water level time series

positive aspects

river is a dynamic system

asynchronous tracks

GIS

Improving the spatio-temporal resolution of water level time series

positive aspects

river is a dynamic system

asynchronous tracks

GIS

Improving the spatio-temporal resolution of water level time series

...previous activities

- No study dedicated to this purpose so far
- As a collateral results, though, we have
- Calmant et al. (2013) developed two regression models to link the altimetric level at virtual station to the nearby gauge
- Birkinshaw et al. (2010) proposed a statistical method for outlier rejection considering all contemporaneous altimetry data

Calmant et al. (2013), Detection of Envisat RA2/ICE-1 retracked radar altimetry bias over the Amazon basin rivers using GPS, Advances in Space Research, 51(8): 1551–1564. doi: 10.1016/j.asr.2012.07.033

... previous activities

- No study dedicated to this purpose so far
- As a collateral results, though, we have
- Calmant et al. (2013) developed two regression models to link the altimetric level at virtual station to the nearby gauge
- Birkinshaw et al. (2010) proposed a statistical method for outlier rejection considering all contemporaneous altimetry data

$$\begin{split} N_A(t_i) &- W(t_i) = b + \left[s_0 + A \sin\left(2\pi \frac{DOY_i}{365} + \varphi\right) \right] \times \Delta_i, \\ (4.a) \\ N_A(t_i) &- W(t_i) = b + \left[s_0 + s_1 \times \Delta_i + A \sin\left(2\pi \frac{DOY_i}{365} + \varphi\right) \right] \times \Delta_i. \end{split}$$

$$(4.b)$$

Calmant et al. (2013), Detection of Envisat RA2/ICE-1 retracked radar altimetry bias over the Amazon basin rivers using GPS, Advances in Space Research, 51(8): 1551–1564. doi: 10.1016/j.asr.2012.07.033

LS

...previous activities

- No study dedicated to this purpose so far
- As a collateral results, though, we have
- Calmant et al. (2013) developed two regression models to link the altimetric level at virtual station to the nearby gauge
- Birkinshaw et al. (2010) proposed a statistical method for outlier rejection considering all contemporaneous altimetry data

Birkinshaw et al. (2010), Using satellite altimetry data to augment flow estimation techniques on the Mekong River, Hydrol. Process., 24: 3811–3825. doi: 10.1002/hyp.7811

... previous activities

- No study dedicated to this purpose so far
- As a collateral results, though, we have
- Calmant et al. (2013) developed two regression models to link the altimetric level at virtual station to the nearby gauge
- Birkinshaw et al. (2010) proposed a statistical method for outlier rejection considering all contemporaneous altimetry data

Gauge data

Improving the spatio-temporal resolution of water level time series

Tourian et al. 2014

S

Gauge data

Gauge data

- 1 time lag determination with respect to the considered VS
- 2 normalization of time series
- 6) confidence limit definition
- 4 outlier identification and rejection
- **5** scaling (back) the measurements at the considered VS
- 6 constructing the time series

Step 1: time lag determination

flow velocity estimation

Bjerklie et al. (2005), Tommy S.W. Wong (2003)		
W	channel width	attained by the nearest cross-section information
S	slope	computed through the mean water level at vir-
L	reach length	between two virtual stations
\overline{V}	local velocity	$\overline{V} = 2.3 W^{0.8} S^{0.4}$
c	celerity	$c = \frac{5}{3}\overline{V}$
Т	time lag	$T = \frac{L}{c}$

Step 1: time lag determination

flow velocity estimation

Improving the spatio-temporal resolution of water level time series Tourian

Step 2: normalization

Normalize the data from each virtual station the 10th percentile falls on 0 and the 90th percentile on 1

Improving the spatio-temporal resolution of water level time series

Step 2: normalization

Normalize the data from each virtual station the 10th percentile falls on 0 and the 90th percentile on 1

Improving the spatio-temporal resolution of water level time series

Step 3: confidence limit definition

Definition of confidence limits of 99% using Student's t-test for a sliding 1-month time window

Improving the spatio-temporal resolution of water level time series

Tourian et al. 2014

Step 4: outlier identification & rejection

Improving the spatio-temporal resolution of water level time series

Step 5: scaling (back)

Rescaling the combined altimetric measurements to the considered virtual station

Improving the spatio-temporal resolution of water level time series Tourian et al. 2014

Step 6: constructing the time series

two options:

- **1** simply connecting the measurements
- 2 3-point moving average, distance weighted

Step 6: constructing the time series

two options:

- simply connecting the measurements
- 3-point moving average, distance weighted 2

S

long-term mean is removed...

S

Validation

Summary and conclusion

- we investigated the water level time series over Po River at different virtual stations as a dynamic system
- the time lag between virtual stations is estimated
- the time series of individual VS are normalized and combined to each other
- outliers are removed using data snooping
- the time series are scaled back to the considered VS and a new time series is constructed by distance weighted averaging
- temporal resolution is improved from 35 day to an effective temporal resolution of \sim 5 day
- water level time series can be obtained at any location along the river using this approach
- we validate our results against daily in situ water level, we obtain Corr.= 0.85, RMSE =0.6 m and NSE = 0.7 for the unmanaged part of the river

- bringing more hydraulic information into the modeling
- time variable slope consideration for time lag estimation
- improving the method over the managed part of river (before and after dam)
- multi-mission altimetry would definitely improve the temporal resolution
- bias consideration in case of multi-mission

Thank you

tourian@gis.uni-stuttgart.de

Improving the spatio-temporal resolution of water level time series Tourian et al. 2014