Multi-mission monitoring of the desiccation of Lake Urmia in Iran

N Sneeuw, MJ Tourian, O Elmi, S Roohi, Q Chen, B Devaraju

Institute of Geodesy University of Stuttgart sneeuw@gis.uni-stuttgart.de

Ocean Surface Topography Science Team Meeting (OSTST) 28–31 October 2014 Konstanz, Germany

Why lake Urmia?

Urmia basin

spaceborne monitoring

Monitoring the lake using spaceborne sensors

Variable	Dataset	Version	Resoluti	on	Time period
			Spatial	Temporal	
Precipitation P	GPCP	2.2	$2.5^{\circ} \times 2.5^{\circ}$	1 mo	2000 - 2014
Evapotranspiration ET	ECMWF	_	$0.75^{\circ} \times 0.75^{\circ}$	1 mo, 1 d, 6 h	2000 - 2012
Groundwater level	WRC	_	_	1 mo	2003 - 2011
lake area S	MODIS	_	$250.0~\mathrm{m}\times250.0~\mathrm{m}$	8 d	2000 - 2014
water level H _{alt}	ENVISAT	_	_	35 d	2002 - 2010
	ENVISAT XT	_	—	30 d	2010 - 2012
	CryoSat-2	_	_	3–50 d	2012 - 2014
water storage ΔM	GRACE GFZ	R5	_	1 mo	2003 - 2014
	WGHM	IRR70	$0.5^{\circ} \times 0.5^{\circ}$	1 mo	2002 – 2009

Surface water extent from satellite imagery

data type	MODIS surface reflectance		
time period	2000–2014		
temporal resolution	8 day		
spatial resolution	250 m		

Surface water extent from satellite imagery

- Overall trend 220±6 km²/yr
- Lost 70% of its area!

Lake level from satellite altimetry

satellite mission	ENVISAT	ENVISAT ext.	CryoSat-2
time period	2002–2010	2010-2011	2012 - 2014
temporal resolution	35 day	30 day	uneven

Lake level from satellite altimetry

• Overall trend 34±1 cm/yr

Level-area relationship

Lake volume

- combining
 - water level from satellite altimetry
 - surface water extent from satellite imagery
 - bathymetry
- Overall trend of 1.03±0.02 km³/yr
- Current rate of 0.44±0.02 km³/yr

2002

2008

2014

10 years of GRACE: secular mass changes

B. Devaraju, Uni Stuttgart

Water storage changes from GRACE

satellite mission	GRACE
data type	satellite-to-satellite tracking / range-rate spherical harmonics, Release 5
time period	2003–2014
temporal resolution	monthly
spatial resolution	approx. 5° / Gaussian 350-km filter

Voss, K. A., Famiglietti, J. S., Lo, M., de Linage, C., Rodell, M., Swenson, S. C., 2013. Groundwater depletion in the middle east from grace with implications for transboundary water management in the tigris-euphrates-western iran region. Water Resources Research 49 (2), 904–914.

- Forootan, E., Rietbroek, R., Kusche, J., Sharifi, M., Awange, J., Schmidt, M., Omondi, P., Famiglietti, J., 2014. Separation of large scale water storage patterns over Iran using GRACE, altimetry and hydrological data. Remote Sensing of Environment 140 (0), 580–595.
- Joodaki, G., Wahr, J., Swenson, S., 2014. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resources Research 50 (3).

Water storage changes from GRACE

- Two equilibrium level
- Clear drop in equivalent water height between 2007—2008
- Average water loss at rate of 1.4±0.09 km³/yr

hydrological analysis

Variable	Dataset	Version		Resolution		
			Spat	ial	Temporal	
Precipitation P	GPCP	2.2	2.5° ×	2.5°	1 mo	2000 - 2014
Evapotranspiration ET	ECMWF	_	0.75° ×	0.75°	1 mo, 1 d, 6 h	2000 - 2012
Groundwater level	WRC	_	_		1 mo	2003 - 2011
lake area S	MODIS	_	250.0 m ×	250.0 m	8 d	2000 - 2014
water level <i>H</i> alt	ENVISAT	_	-		35 d	2002 - 2010
	ENVISAT XT	_	_		30 d	2010 - 2012
	CryoSat-2	_	_		3–50 d	2012 - 2014
water storage ΔM	GRACE GFZ	R5	_		1 mo	2003 - 2014
	WGHM	IRR70	0.5° ×	0.5°	1 mo	2002 – 2009

Water storage changes, hydrological investigation

Drop in water storage

S

Lake dries up faster than its basin after 2009?

- After 2009 the lake has continuously lost 0.62±0.03 km³/yr of its water volume, while the rate of water loss in the whole basin is less, namely 0.44±0.02 km³/yr and
- The mean groundwater level of the basin outside the lake shows a slight positive trend (recharge)

Lake dries up faster than its basin after 2009?

• Scenario 1:

Induced leakage (lateral flow) as the groundwater level becomes lower than the lake level

- Scenario 2: Storage of water behind dams leading to a reduction of lake inflow
- Or (more likely): Combination of both scenarios

Lake Urmia's future?

Aral Sea

Lake Urmia's future?

- Given the current water volume trend and the bathymetry, the lake will divide into two minor lakes (Northern and Southern) in the near future
- Current rate of water volume loss 0.44±0.02 km³/yr (2011– present)
- Intuitive prediction: lake will dry up in 5 years (around 2020)

Summary and conclusion

- Urmia Lake has lost on average 34±1 cm/yr of its water level every year from 2002–2014
- The lake has lost about 70% of its water extent within the last 14 years
- The lake water volume down from 8 km³ to less than 2 km³ in 10 years
- The results from GRACE reveal that the basin of Lake Urmia faces a water loss at an average rate of 1.4±0.1 km³/yr
- Equivalent water height from GRACE agrees very well with the mean groundwater level
- Urmia Lake dried up faster than its watershed between after 2009
- A regional environmental monitoring system is required to track water availability and consumption in this region, where the geodetic spaceborne sensors presented in this study would play an important role in augmenting the understanding of the water cycle in the basin.

{sneeuw,tourian}@gis.uni-stuttgart.de

 Tourian MJ, O Elmi, Q Chen, B Devaraju and N Sneeuw (2014)
A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran
Journal of Remote Sensing of Environment, accepted doi: 10.1016/j.rse.2014.10.006

