



# **Across-track Dilation Compensation**

Chris Ray, Cristina Martin-Puig, Monica Roca,

Albert Garcia, Roger Escola

#### Background

The backscattered mean power of a SAR altimeter can be modeled by the following function, where G is the antenna gain and  $H_s$  is the significant wave height, k is the range bin and  $\ell$  is the doppler bin. (TGRS Feb 2015)



#### Range Cell Migration Compensation

The delay doppler map of the power usually is compensated for range cell migration.





Range Cell Migration Compensated

## Amplitude Compensation

Compensating for the amplitude term

$$G_{k,\ell}\sqrt{g_\ell}$$

in the power

$$G_{k,\ell}\sqrt{g_\ell}f_0(g_\ell(k-k_0))$$

we create a delay dopple map that is of equal be amplitude for all doppler be applied by the second second

$$P'_{k,\ell} = f_0(g_\ell(k - k_0))$$

Amplitude Compensated

## **Dilation Compensation**

Compensating for the range scaling  $g_{\ell}$  we create a power waveform that is identical for all dopplers.

$$P_{k,\ell}'' = f_0(g_0(k - k_0))$$



**Dilation Compensated** 

#### Multi-look waveform

The multi-look waveform is the average of the dilation compensated power, and is fit by simply  $P = A f_0(g_0(k - k_0))$ .



## Tracking Improvements

Comparing the tracked  $H_s$  and Epoch using this Dilation Compensated (DC) waveform with the conventional waveform.



# Tracking Improvements



# Conclusions

• Noise level has been reduced by up to a factor of 5, leading to higher precision measurements.

• Multi-look waveform is represented by  $P = Af_0(g_0(k - k_0))$ .

• The range scale  $g_0$  depends only on the significant wave height. The offset  $k_0$  depends only on the epoch.

• Waveform depends only on the sea state, e.g. it does not depend on the anti-aliasing filter.

• Retracking computation reduced by two orders of magnitude.





# Acknowledgments

• This work has has been partially funded by a S6 GPP contract with ESTEC/ESA.

• This work has has been partially funded by faculty development grants from Saint Mary's College of California.

• We would like to thank the ESTEC team for fruitful discussions during the development.

Thank you for your attention



