

## **Towards Jason-3 vaveforms processing:**

# Assessment of the Numerical Retracking performances.

F. Boy, N. Picot, JD. Desjonquères (CNES) P. Thibaut, JC. Poisson, S. Peyridieux (CLS)

OSTST – Constance Lake – Germany - 27-31 Oct, 2014

#### Introduction

**Numerical Retracking:** Originally developed by CNES in the frame of SAR altimeter data processing.

 $\rightarrow$  a better use of the altimeter PTR **to improve the radar echo modeling.** 

#### For Jason-3:

Even if the Jason-3 altimeter POS3B perfectly **fulfils all its requirements**, the "numerical retracking" has been considered as a **very performing solution** to prevent **any degradations** on altimetry products due to a potential ageing of components.

This presentation aims at :

Presenting the numerical retracking techniques

Demonstrating the numerical retracking solution is an interesting alternative to the current MLE4/3 widely used on all missions.

Validating the numerical retracking on Jason-2 mission



#### **Reminder of the MLE4 Retracking**



#### MLE4: Advantages/Drawbacks

#### **Advantages:**

- Continuity between past and current missions
- ≻ Analytical model → fast computation

#### **Drawbacks:**

- > PTR approximation
- > Use of LUT computed from **one reference PTR**
- Any deviations from the reference PTR will generate errors
- LUT approach is efficient only if the PTR side lobes are stable

Cches

What if the altimeters would present a stronger ageing or higher characteristics variability?

7

ē

The current MLE4 retracking would not have the capability to account for instrument characteristics variations.

To prevent this situation, we need a new retracking solution accounting for the real instrument PTR

### MLE4 Numerical Retracking (MLE4Num)



All instrument characteristics are directly taking into account inside the model
 PTR evolutions is included in the echoes retracking «on the flow».

- > BUT results **SHOULD/MUST be at least equivalent** to MLE4
  - → Validation using Jason-2 data (cycle 35)



## Numerical vs Hayne's model



### Performances on Jason-2 data Waveform Residuals



#### **Performances on Jason-2 data MQE:** Difference between model and echo



MQE MLE4



- MQE : MQE reduced everywhere
- MQE much more homogeneous wrt SWH



### Performances on Jason-2 data SLA and SWH Analysis



## Excellent agreement between MLE4num and MLE4 Range and SWH estimates

## Same excellent agreement for Sigma0 and Mispointing values (not shown)





Same SLA spectral content
 Small hump reduction on the SWH Spectrum



#### Conclusions

- MLE4Num allows to take into account the instrument features directly inside the echo model.
- MLE4Num is robust to any strong instrument ageing (which is not the case of the MLE4) 
   Adata quality continuity
- For Jason-2 (stable instrument), MLE4num provides the same data quality than the operational MLE4 Retracking 
   missions continuity

#### **For JASON-3 mission:**

MLE4 remains the retracking reference solution over ocean in the product.

In parallel, the MLE4Num will be activated within a prototype to generate demonstrative SIGDR products containing both MLE4 and MLE4Num.

MLE4Num status to be done on J3 (and J1, J2, ...) data at the end of inflight assessment.

#### **Perspectives**



Figure 3-19 TOPEX Ku-Band Cal Sweep PTR Comparisons (labels shown for first four sidelobes each side of central peak)

#### Annex: Performances on Jason-2 data : Sigma0 and ksi differences



▶ High level of agreement between MLE4num and MLE4 sigma0 and ksi estimates

Cones