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Overview of JMR GDR-C Calibration

e JMR calibration updated several times during the mission to remove
calibration shifts

e 2-4 cm change in PD over mission would be present if nothing had
been done
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Overview of JMR Calibrations To Date .2,

Pass Averaged JMR - TMR TBs using pre-launch calibration Day of 2002
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Overview of JMR Calibrations To Date .2,

JMR TB Drift Before Calibration

dTBceld for Chanrel 1

e April 2008 - GDR-C 2
— Implemented time-variable | | 18.7
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calibration coefficients with new = =
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— Error in coefficients carried over
from an error in the post-launch
calibration of the TMR.
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Overview of JMR Calibrations To Date .2,

PD Error

JMR-ECMWF Global Mean PD (cm)
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End-of-Mission Calibration JPL

End of mission re-calibration builds on previous calibration that has been
done (e.g. applied on top of existing corrections)
Remaining issues are to address both short term and long term residual
calibration instability evident in the data

— Long term drift addressed by calibrating the TBs to the SSM/I FCDR

— Residual yaw state errors derived using PD and WS model comparisons

Additionally, the algorithms are brought to Jason-2 AMR GDR-D standards
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Cold End TB Drift (Ocean Data) #E%

23.8 GHz JMR - 55MI FCDR

18.7 GHz JMR - 55MI FCDR
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Warm End TB Drift (Rainforest Data) e

18.7 GHz JMR - 35M1 FCDR 3.8 GHz JMR - 35M1 FCDR
1 4
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SSMI over heavily vegetated land regions (e.g. : 34.0 GHz
" f_'

rainforest) to constrain the warm end TB drift M A i i
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Drift Correction JPL

e Dirift correction is applied to final GDR —C calibration

e Takes the form of a time variable scale and offset correction

IB(ch,t) = 1B (ch,t) — AT, (ch,t)

corrected uncorrecte d

AT, (ch,t) = c,(ch,t)+ c,(ch,t)TB (ch,t)

uncorrecte d

e Coefficients are derived by forcing agreement with the running
average of the SSM/I FCDR biases over the ocean (cold end) and
over the rainforest (warm end)
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Instrument Temperature Correction oY

e “Yaw-state” dependence periodically resurfaces (creates 60-day signal)

e Results from instrument temperature dependency of calibration changing over
time

JMR Instrument Temperature JMR-ECMWF PD on GDR
300 : L : ! . . . . ~ )
295 | [
0.2
290
-] | !
[+
§ 5
280
£ g 0.2
e |
5 275 =
E [&]
g w -0.4
& 270 «
E s .
! 1
& 265 -0.6
260
0.8
255]
25“' i L i 1 '! L ‘1 1 L L '
04/08 o7/08 10/08 01/08 04/09 07/08 10/08 0110 2002 2004 2006 2008 2010 2014
Date Date

471U VV1IL VL AL, JIoLuou1L 17T LU VWU UNVL VLT



Instrument Temperature Correction

SPL

Jet Propulsion Laboratory
California Institute of Technology

JMR - ECMWF PD [cm]

e This effect can be typically removed by binning TB references as a
function of instrument temperature and removing the slope

e Because the time period was short, and the temperature dependency
was a variable with time, the TB comparisons were too noisy to use this

approach
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Instrument Temperature Correction s

JMR - ECMWF PD (cm)

e Alternative approach was developed using both the path delay and wind speed
comparisons to the model to determine TB instrument temperature dependency
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Instrument Temperature Correction s

e Slopes computed using running 120-day 16.7 GHz TB Inst temp correction
window 0.15!

e Applied to TB time series in addition to 0.1
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PD Validation aBL

e PD compared to time series from ECMWF and MERRA
e Long term drift < Tmm/decade compared to these models

JMR-Model PD vs Time
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PD Validation Stratified JPL

e PD compared to model for low, medium and high PD ranges to
assess any geographically correlated drift

e No definitive drift over all PD ranges

ECMWF-GDR MERRA
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Jet Propulsion Laboratory
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Wind Speed Time Series JPL

Wind speed compared to altimeter vs time shows < 0.2 m/s drift over
mission

Independent comparison that is consistent with < 1mm PD drift over
mission
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Algorithm Updates 28t

e JMR algorithms updated to Jason-2 AMR standards
All-weather sigma-0 attenuation correction algorithm
Consistent sea ice and rain flagging

— Near land path delay retrieval algorithm

Mean JMR-Model PD for GDR and MP algorithms
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Summal o Loy
California Institute of Technolos

JMR end-of-mission re-calibration effort is complete

— Long term calibration constrained by inter-satellite calibration to the SSM/I
FCDR and on-Earth references

— Residual time variable yaw-state (60 day) dependencies removed

Month-to-month calibration uncertainty about 0.2K (~2mm in PD)
— 2 mm/yr uncertainty for any 1 year

— <1 mm/yr uncertainty for time spans greater than 2 years

— << 1 mm/yr for mission

Algorithms updated to Jason-2 GDR-D standard

The need for this type of a posteriori calibration will be
reduced for Jason-3 (cold sky calibration) and eliminated
for Jason-CS (complete 2-point external calibration)
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° SPL
LOOkln tOW&I‘d the Future oL

e AMR-C concept includes secondary reflector to perform end-to-end
calibration using stable blackbody calibration targets similar to SSM/I, AMSR-
E, AMSU, etc.

e Wet PD long term stability estimated to be better than 0.3mm for any one year
period and eliminates reliance on ancillary data sources for calibration
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e Current status of the JMR calibration

e End-of-mission recalibration approach

e Initial comparison with the SSMI FCDR
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Jason-1 Jason Microwave Radiometer (JMR) JPL
2002 - 2013 e o

e Jason-1 JMR maintained same
measurement requirements as TMR

— 1.2 cm RMS error for PD measurement
— No requirement for long term stability

« JMR used noise diodes for calibration to eliminate
the need for a cold sky horn

— First spaceborne radiometer to use NDs

— Paved way for Aquarius, SMOS, SMAP and of course
AMR

— JMR ND implementation and thermal environment
presents calibration challenges

* Maintained same antenna design as TMR with
partial blockage from struts

— Results in larger sidelobes (creates geographically
correlated errors)
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. . . JPL
End-of-Mission Calibration Plan &=

® Previous calibration relied upon on-Earth hot and cold T, references

— Vicarious Cold Reference (Ruf, 2000, TGARS)
— Amazon pseudo-blackbody regions (Brown and Ruf, 2005, JTECH)

— On-orbit references sensitive to climate variability; require corrections; risk of aliasing geophysical
signals

e Complementary inter-sensor TB calibration approach recently developed and applied to AMR (Brown, 2012,
TGRS)

— Uses polynomial regression to transfer one sensor’s measurement to another
— Requires stability of other systems
— Presents independent means to monitor the long term TB calibration

e Compare geophysical retrievals to in-situ measurements, models and other sensors
— Dependent on long term stability of other sensors/models
— Need to use re-analysis products from models to ensure a consistent long term record

e Demonstrated consistency between independent methods ensures a “climate-quality” long term
calibration
— the agreement, or lack thereof, between the different references provides a means to assess the
uncertainty of the long term calibration
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SSM /1 FCDR JPL

California Institute of Technology

e The SSM/I series of radiometers have operated since 1987, spanning the Topex/Jason altimeter
record

e A newly released SSM/I Fundamental Climate Data Record is a reprocessed well inter-calibrated
record of brightness temperature ideal for inter-satellite calibration with JMR

e SSMI F13, F14 and F17 used in this analysis

) < — TMR
< > JMR
CSU FCDR Data Availability (Gray indicates ICDR) AM R

F08 SSM/I A
BN F10 SSW/I

_|F11 SSM/1
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b F15 SSM/I RADCAL (Not For Climate)
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| F17 ssmis
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Match-up Process L

e A database of co-locations is generated by finding JMR and SSMI
observations that occur within 25 km and 45 minutes of each other

e The match-ups cluster between high and low latitudes as a function of
time

JMR-SSMI F13 Co-locations June 2005 - 25km/'d5 mins
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JMR Equivalent TBs from SSMI  2B%

e Polynominal regression used to transfer SSM/I TBs to JMR equivalent
TBs

— Uses 19, 22 and 37 GHz TBs from SSMI

e Coefficients derived from AMR used in this analysis
— Ensures consistent cross-calibration between AMR and JMR

T AMR
B _ocean

_ 197V 19H 22/24V 22/24v 37V 37TH

e JMR-SSMI biases correlated with latitude are removed to ensure no
signals due to the sampling are aliased into the trend

— Biases with latitude computed using the entire record

e JMR-SSMI TB differences greater than 8K (5-sigma) were removed
from the match-up database
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18.7 GHz JMR - 35M1 FCDR 3.8 GHz JMR - 35M1 FCDR
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e Computed monthly averages of the JMR — ,
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F13 and F14 ;.
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Monthly Consistency 28

e < 0.2K standard deviation of monthly JMR biases computed from
SSMI F13 and F14 with no discernible trend

JMR SSMI F13 - JMR SSMI F14
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Comparison with Ocean Reference Bt

w 18.7 GHzﬂ . 23.8 GHz
2 02 2 02
| 34,0 GHz L
e Dark blue line shows monthly | |
averaged vicarious cold reference with ] | l al
biases from SSMI . Al —+e
e Consistency observed between these 2 a3 "
independent references increasing =
confidence in the long term trends o8
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