Two decades of global and regional sea level observations from the ESA-CCI Project

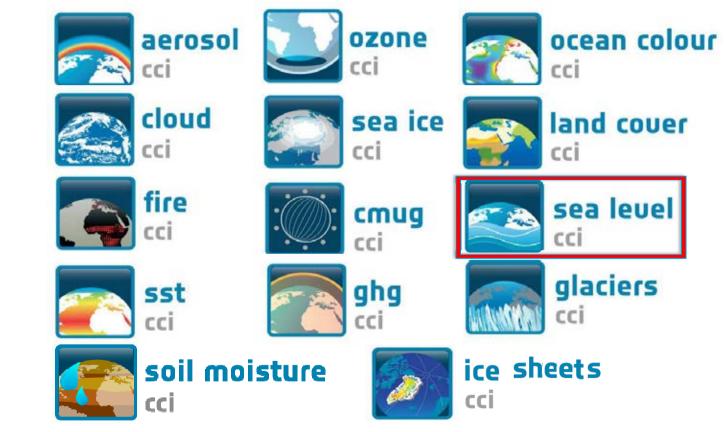
B.Meyssignac^{1,14}, G.Larnicol², A.Cazenave^{1,14}, M.Ablain², J.F.Legeais², Y.Faugere², J.Johannessen³, D.Stammer⁴, G.Timms⁵, P.Knudsen⁶, P.Cipollini⁷, M.Roca⁸, S.Rudenko⁹, J.Fernandes¹⁰, M.Balmaseda¹¹, G.Quartly¹², L.Fenoglio-Marc¹³, T.Guinle¹⁴, S.Dinardo^{15,} B.Lucas¹⁶, J.Benveniste¹⁷

1. LEGOS (France), 2. CLS (France), 3.NERSC (Norway), 4. University of Hamburg (Germany), 5. CGI (UK), 6. DTU (Danemark), 7. NOC (UK), 8. isardSAT (Spain), 9. GFZ (Germany), 10. FCUP (Portugal), 11. ECMWF (UK), 12. PML (UK), 13. TUD (Germany), 14. CNES (France), 15. Serco/ESA, 16. Deimos/ESA, 17. ESA

Context

Requirements to meet the needs of the CC community

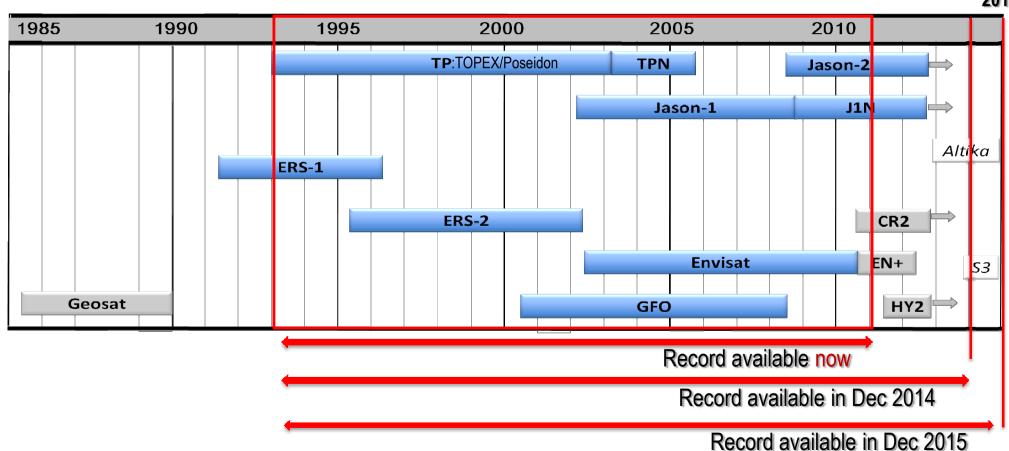
Essential Climate Variables (ECVs)


Domain	Essential Climate Variables			
Atmo- spheric (over land, sea and ice)	Surface:	Air temperature, Precipitation, Air pressure, Surface radiation budget, Wind speed and direction, Water vapour.		
	Upper-air:	Earth radiation budget (including solar irradiance), Upper- air temperature, Wind speed and direction, Water vapour, Cloud properties.		
	Composition:	Carbon dioxide, Methane, Ozone, Other long-lived greenhouse gases, Aerosol properties.		
Oceanic	Surface:	Sea-surface temperature, Sea-surface salinity, Sea level, Sea state, Sea Ice, Current, Ocean colour (for biological activity), Carbon dioxide partial pressure.		
	Sub-surface:	Temperature, Salinity, Current, Nutrients, Carbon, Ocean tracers, Phytoplankton.		
Terrestrial	River discharge, Water use, Ground water, Lake levels, Snow cover, Glaciers and ice caps. Permafrost and seasonally-frozen ground, Albedo, Land cover (including vegetation type), Fraction of absorbed photosynthetically active radiation (FAPAR), Leaf area index (LAI), Biomass, Fire disturbance, Soil moisture.			

Objective: provide stable, long-term, satellite-based ECVs data products for climate modellers and researchers.

Context

CCI PROGRAM

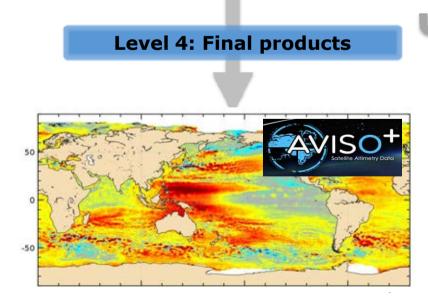

Objective: To realise the best long term ECVs records the full potential of the long-term global Earth Observation archives from satellites (not just ESA but all sources via international collaboration) as a significant and timely contribution to the ECV databases required by UNFCCC

European Space Agency

Based on satellite data from ESA, CNES, EUMETSAT, NASA, NOAA, US NAVY, ISRO

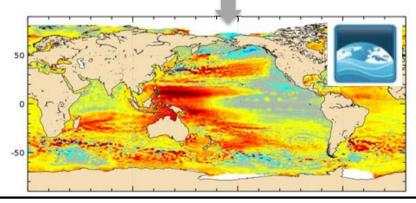
2015

CCI product: same approach as AVISO with different standards



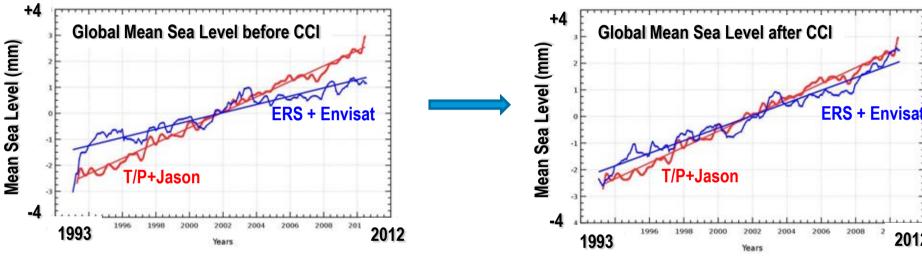
Level 1: Raw telemetry

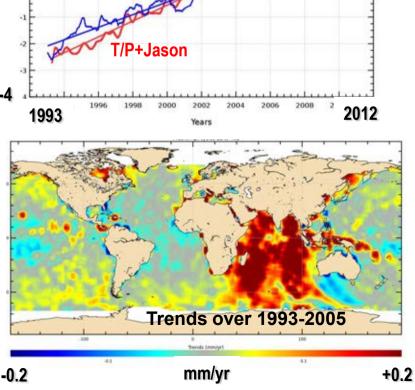
Level 2: Altimetry data


- 1) instrumental errors
- 2) atmospheric propagation and perturbations
- 3) Geophysical corrections
- 4) POD

Level 3: Cross calibration and Validation

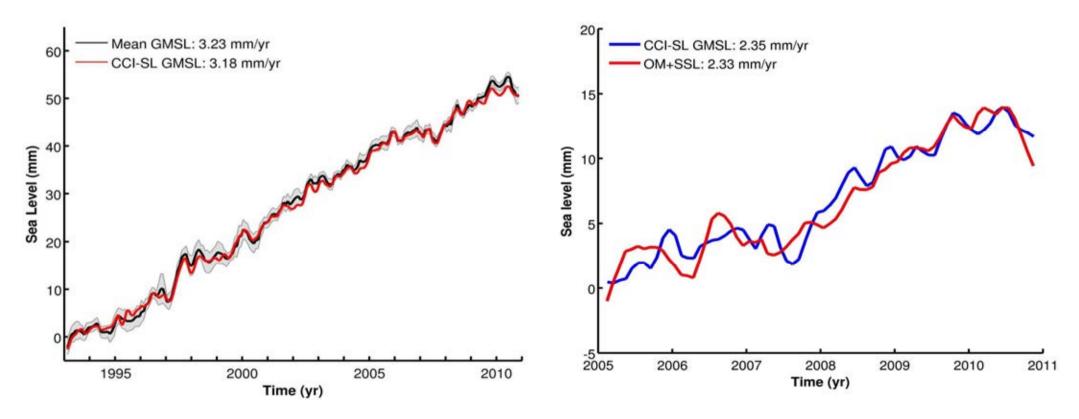
Same standards 1) instrumental errors when possible 2) atmospheric propagation and perturbations 3) Geophysical corrections 4) POD


Level 4: Final products


Objective: get the best long-term trends and decadal variability possible. Improvements of the sea level record for climate studies: on the GMSL

 New instrumental correction for ENVISAT: GMSL trend more consistent between ERS-ENVISAT and Topex-Jason

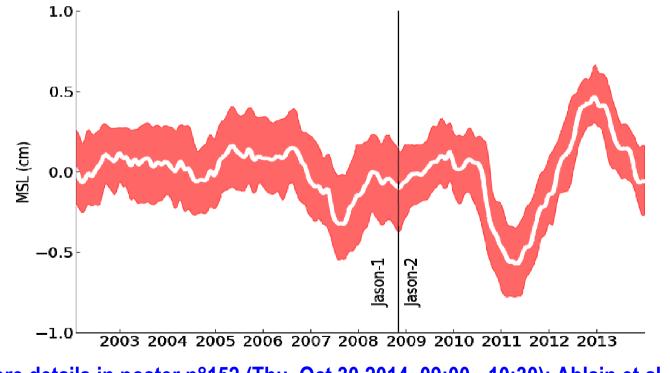
 New wet troposphere corrections based on the GNSS path delays



Improvements of the sea level record for climate studies: Validation

CCI Global mean sea level

Global mean sea level (average of AVISO, Colorado University, NOAA and GSFC data)


Global mean sea level trend

Comparison with GRACE+ARGO

ESA Sea_Level_cci: Uncertainties

• Uncertainty in GMSL trend: ±0.5 mm/yr over 1993-2010 and ±0.36 mm/yr over 2000-2010

Uncertainty in GMSL variations (available in the next release): ~±2. mm

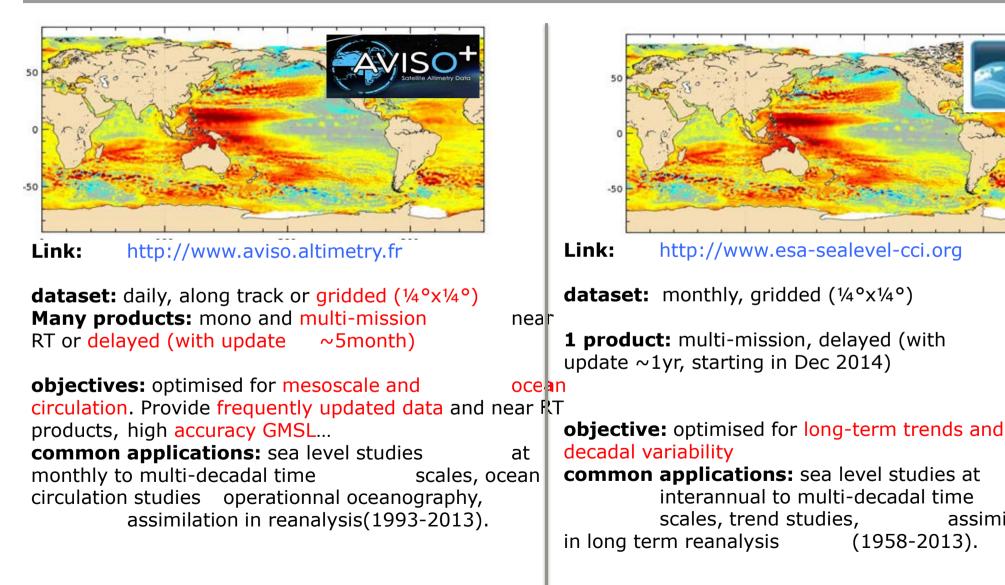
More details in poster n°152 (Thu, Oct 30 2014, 09:00 - 10:30): Ablain et al.

« Confidence envelop of the global MSL time series deduced from TOPEX, Jason-1 and Jason-2 altimeter missions. »

ESA Sea_Level_cci: Uncertainties

Uncertainties

Spatial Scales	Temporal Scales	GCOS* Requirements	CCI product errors
Global Mean Sea	Long-term evolution (> 10 years)	0.3 mm/yr	< 0.5 mm/yr
Level	Inter annual signals	0.5 mm over 1 year	< 2 mm
(10-day averaging)	(< 5 years)	0.5 mm Over Tyear	over 1 year
	Periodic signals	Not defined	Annual < 1 mm
	(Annual, 60-days,…)	Not defined	60-day < 5 mm
Regional Mean	Long-term evolution (trend)	1 mm/yr	< 3 mm/yr
Sea Level (2x2 deg boxes and	Inter annual signals (> 1 year)	Not Defined	Not evaluated
10-day averaging)	Periodic signals Not Defined		Annual < 5mm
	(Annual, 60-days,…)	Not Denned	60-day < 10 mm


* More details to the satellite-based component of the "Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update)" GCOS-154, december 2011)

different products for different needs

assimilation

(1958-2013).

Sea_Level_cci Phase 2

B.Meyssignac^{1,14}, G.Larnicol², A.Cazenave^{1,14}, M.Ablain², J.F.Legeais², Y.Faugere², J.Johannessen³, D.Stammer⁴, G.Timms⁵, P.Knudsen⁶, P.Cipollini⁷, M.Roca⁸, S.Rudenko⁹, J.Fernandes¹⁰, M.Balmaseda¹¹, G.Quartly¹², L.Fenoglio-Marc¹³, T.Guinle¹⁴, S.Dinardo^{15,} B.Lucas¹⁶, J.Benveniste¹⁷

1. LEGOS (France), 2. CLS (France), 3.NERSC (Norway), 4. University of Hamburg (Germany), 5. CGI (UK), 6. DTU (Danemark), 7. NOC (UK), 8. isardSAT (Spain), 9. GFZ (Germany), 10. FCUP (Portugal), 11. ECMWF (UK), 12. PML (UK), 13. TUD (Germany), 14. CNES (France), 15. Serco/ESA, 16. Deimos/ESA, 17. ESA

Sea_Level_cci Phase 2

The CCI phase I achievements have encouraged the continuation of the work by launching the phase II of the program. This new phase, started in 2014 for 3 additional years, will allow us to explore the new areas of improvement which arose in phase I.

Evolutions of the algorithms are central to the project since they affect the physical content of the Sea Level CCI ECV products. The strategy is thus to refine the user requirements and to focus on the improvement of the altimeter corrections which constitute the most important sources of errors with respect to the climate scales.

The main challenges are:

- Altimeter and radiometer processing: use a multi-mission instrument expertise to enhance all the altimeter and radiometer calibration accuracy.
- Improved orbits: provide the best homogeneous solution for all missions. Sea Level corrections: homogeneous and stable time series using, for example, the most recent reanalyzed models.
- Arctic region: reduce the altimetry errors at high latitudes.
- Coastal areas: improve the sea level near the coasts.

All these developments will provide us with the opportunity to increase the synergy between the altimeter experts and other communities, particularly the atmosphere and sea ice communities.

Sea_Level_cci Phase 2

A specific task will be dedicated to the assessment of the ECV products by Climate Research Group: this will first be done through assimilation and comparison with ocean models outputs.

The error of the products will be characterized through sea level closure budget analyses and international inter comparison exercises.

This work will be performed keeping in mind the phase I achievements. This will be the opportunity to increase the link with other ECVs (SST, Sea Ice, Ice Sheets).

The new ECV versions will be distributed on request to users.