

Major events since last OSTST (October, 2013)

- Project Milestones
 - Sixth Jason-2 REVEX : May 12-14, 2014
 - EUMETSAT approval for extension up to end 2017
- Satellite major events
 - None
- Payload major events
 - GPSP-A issue and switch to GPSP-B on September 8, 2014
- Ground major events
 - USG1 monitoring improvement
 - Barrow deployment OK and antenna ready for Jason-2 by end of October
 - Processing software upgrade early 2014 (TM-NRT v4.1 since 18 March '14)

Current OSTM/Jason-2 mission Status is OK

Platform Status

- The Jason-2 satellite bus is OK
 - Command / control , RF : PMA : availability TBC PMB operational OK
 - Patch for non-corrected single EDAC → uploaded in April 2014
 - On-Board Software, Mass Memory, Telemetry & Telecommand system
 - Thermal aspects:
 - Active thermal control works successfully and is sized with significant margins to meet further worst case conditions
 - Electrical aspects :
 - Satellite power and consumption are within the power, consumption and energetic budgets
 - AOCS (attitude and orbit control system) :
 - All AOCS units work nominally, AOCS control laws work as expected
- Exceptional activities :
 - Unused equipment destocking (gyro, STR)
 STR monitoring
 SADM expertise
 Gyro calibration (last done in July 2014)
 OK

Jason-2 bus is fully operational after more than 6 years in orbit

New frontiers of Altimetry – Lake Constance, Germany - October 2014

>OSTST meeting

OK

OK

OK

Navigation and guidance

- Station keeping maneuvers
 - ground tracks are maintained within ±1km from the reference grid at Equator
 - station keeping maneuvers are made with only one thrust above land on any orbit

- no collision avoidance maneuver
- propellant : ~24 kg (6 g/year)

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Payload Status since last OSTST (October, 2013)

• Core Payload

_	POSEIDON3	ОК
	 2 cycles (209 & 220) in DIODE/DEM mode 	
_	DORIS	ОК
_	AMR	ОК
_	GPSP-A	NOK
	 Switched OFF on August 23^{rd,} GPSP-B switched ON a operational since 10/09 → limited impact on the presence of the presence of	

• Passengers

—	T2L2	ОК
_	CARMEN2	ОК
_	LPT	ОК

➔ payload fully OPERATIONAL after more than 6 years in orbit with redundancy available for POS-3, DORIS & AMR

➔ passengers perform satisfactorily

Poseidon-3

- Availability = 100% over the period
- Routine/Exceptional calibrations are OK
- CNG : Good Stability (of the order of calibration accuracy)
- Suppression of "long CAL2" calibrations

>OSTST meeting

New frontiers of Altimetry – Lake Constance, Germany - October 2014

DORIS

- DORIS Availability = 100% over the period
 - One minor anomaly in January
 - Effective accuracy as compared to on-board GPS (platform) is stable :
 - 1.8 µs (OGDR & IGDR)
 - ~1.5 μs (GDR)

+ very good performance of the ground network (~90 %)

→ Performance for real-time orbit accuracy over the period is ~2.8 cm (radial rms)

New frontiers of Altimetry – Lake Constance, Germany - October 2014

AMR

- AMR continues to provide excellent performance
- Availability = 100% over the period (total outages <70h since June 2008)
- No calibration changes implemented since February 28, 2012
- With ARCS processing the residual drift of GDR-D wet path delay (PD) is estimated to be < 1mm/year over mission life

New frontiers of Altimetry – Lake Constance, Germany - October 2014

GPSP-A & B

- On 23 August 2014, GPSP-A began resetting repeatedly every 31 seconds → switched OFF
- GPSP-B was powered on 26 August 2014 and did not return any POD data; few days after, it began functioning properly and outputting POD data on 10 Sept. 2014
- Degradation of the L2 frequency when the instrument temperature increases by 1°-2°C (in fixed yaw attitude; or when tracking > 8 sats)
 - Ambient payload temperature control is under investigation
- Fit residuals overlaps not as good
 - GPSP-B PC: 27.4 cm, LC: 5.5 mm > GPSP-A PC: 22.0, LC: 3.3
 - Antenna map needs to be updated
- Radial Overlaps not as good
 - **GPSP-B 3.5 mm > GPSP-A 1.1 mm**
 - Antenna map update; not as many satellites tracked (8 vs. 12)

GPSP - Tracking Performance

Lake Constance, Germany - October 2014

>OSTST meeting

Zoom

LRA Status

Summary:

- The LRA continues to provide returns adequate for tracking.
 - 100% availability since launch.
- SLR tracking of Jason-2 has been nominal.
- The top five stations for Jason-2 tracking are: Yarragadee (Australia) Changchun (China) Wettzell (Germany) San Juan (Argentina) Mt. Stromlo (Australia)

System elements

Ground & Operations - Status and performances

•	Earth terminals :	
	– Usingen (USG1) :	ОК
	 Wallops and Fairbanks (CDAS) 	OK
•	Control Centers :	
	 J2CCC CNES Control center 	ОК
	 all the elements are OK 	
	 SOCC NOAA Control center 	OK
	 all the elements are OK 	
•	Instrument Commanding and Monitoring Centers :	
	 SSALTO for CNES instruments 	ОК
	 – JPL Mission facility for NASA/JPL instruments 	ОК
	 Passengers Mission centers 	ОК
	New frontiers of Altimetry – Lake Constance, Germany - October 2014 OSTST meeting	

OGDR products Status and performances

- NRT products made by EUMETSAT Mission Center NOAA/ESPC Mission Center
- Major changes in the period
 - New version of TM-NRT (v4.1) software operational since March 2014
- EUMPC : ~100% OGDR successful for PLTM1 acquired at USG
- NOAA ESPC : ~100% OGDR successful for PLTM1 acquired at CDAs
- 100 % OGDR products archived, all disseminated via EUMETCast and via NOAA dissemination services

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Operational Geophysical Data Record data latency

Requirements are:

- 75% of OGDR data within 3 hours from sensing
- 95% of OGDR data within 5 hours from sensing

Performance (measured at EUMETCast end user level) 90 % in less than 3 hours 97 % in less than 5 hours EUMETSAT's Inputs

Jason-2: Sep-2013 through Sep-2014 Monthly OGDR Latency Statistics (measured at end users EUMETCast Reception Station) Performance (measured at NOAA ESPC production level) 96 % in less than 3 hours 99 % in less than 5 hours NOAA's Inputs

New frontiers of Altimetry – Lake Constance, Germany - October 2014

IGDR - status and performances

- Jason-2 IGDR processing is OK (CNES : 100% IGDR successful)
- Latency : more than 98% of products available in less than 1.5 day
- 100% IGDR products archived
- all disseminated via CNES AVISO+ and NOAA dissemination services

>OSTST meeting

New frontiers of Altimetry – Lake Constance, Germany - October 2014

GDR - status and performances

- GDR produced by SSALTO Mission Center
- Jason-2 GDR processing is OK (latency OK)
 - Systematic cross checked validation by CNES and JPL
 - Cycle per cycle (and yearly) validation
 reports available on AVISO+
 <u>http://www.aviso.altimetry.fr/en/data/calval/systematic-calval.html</u>

>OSTST meeting

- 100% GDR products archived
- all disseminated via CNES AVISO+ and NOAA dissemination services

Jason2 GOR validation latency from end SPA processing (since REVEX 2014)

19

System Requirements and Performances

Gyro CAL

- Altimeter Antenna Pointing :
 - Requirement : < 0.2°</p>
 - pointing performance stable since launch

Sea-level performances

SSH error deduced from crossovers analyses using radiometer data

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Sea-level budget error (error < 10 days)

Available in the annual CALVAL report

	Frees buildest	Specifications			Error (<10 days)			GOAL		
	Error budget	OGDR	IG	DR		GDR	OGDR	IGDR	GDR	GUAL
for	Altimeter range	≻1.7 cm			>1.6 - 1.7 cm			1.5 cm		
Ind corrections surface height culation	lonosphere	1 cm		0.5 cm			>1 cm / >0.2 cm ⁱ			0.5 cm
orrec ice he	Sea State Bias	3.5 cm	2 cm			>0.4 cm			1 cm	
s and corre ea surface calculation	Dry troposphere	1 cm	0.7 cm			0.4-0.7 cm	0.3-0.7 cm		0.7 cm	
umeters a raw sea cal	Wet troposphere	1.2 cm				>0.2 cm			1 cm	
Parameters and corrections for raw sea surface height calculation	Rms Orbit (radial component)	10	cm 2.5 cn		n	1.5 cm	>3.7 cm	>1 .7 cm	>1.0 cm	1.5 cm
Altimeter oarameters	Significant wave height	10% or 50 cm	10% or 50 cm			13 cm		5% or 25 cm		
Altimeter	Wind speed	1.6 m/s	1.5 m/s			1 m/s		1 .5 m/s		
Alt	Sigma0 (absolute)		0.7 dB			0.11 dB			0.5 dB	
Raw se	ea surface height	11 cm	3.9 cm			3.4 cm	> 4.2 cm/-	> 2.6 cm - 2.8 cm	>2.1 cm - 2.4 cm	2.5 cm
Final sea surface height		x	x			x	< 2. 5 cm	< 2.7 cm	< 3.3 cm	x

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Sea-level budget error (at climate scales)

Available in the annual CALVAL report

With usage of In-situ comparisons (Tide Gauges, Argo profiles)

Spatial Scales	Temporal Scales	Altimetry errors
Global Mean Sea Level	Long-term evolution (> 10 years)	≤ 0.5 mm/yr
(10-day averaging)	Inter annual signals (2-5 years)	⊻ 3 mm
	Periodic signals	Annual ≤ 1 mm
	(Annual, 60-days,)	60-day ≤ 3 mm
Decianal Macan See Loval	Long-term evolution (trend)	≤2 mm/yr
Regional Mean Sea Level (2x2 deg boxes and 10- day averaging)	Inter annual signals (> 1 year)	Not evaluated
day aver aging)	Periodic signals	Annual ≤5mm
	(Annual, 60-days,)	60-day ≤1 cm

New frontiers of Altimetry – Lake Constance, Germany - October 2014

System Requirements and Performances

• Data availability :

–Requirement : The GDR shall contain 95% of <u>all possible</u> over-ocean data (acquisition and archive) during any 12 month period, with no systematic gaps.

• from October 2013 until October 2014

\Rightarrow satellite unava	ilability	~0 % < 4%	req
— bus : 0%	altimeter : 0.01%	Doris : 0%	AMR : 0.01%
\Rightarrow ground unavai	lability	~0 % < 1%	req

→ Global Jason-2 system availability : 99.9 %

NB : GDR data availability vs theory (fr	om 2013 annual CALVAL report)
All surfaces :	95.3 %
Over Ocean :	99.0 %

New frontiers of Altimetry – Lake Constance, Germany - October 2014

Conclusion

- Jason-2 satellite has still an excellent behavior
- All satellite and system performances requirements are fulfilled with large margins
- Extended Operational Routine Phase is nominal
- CNES and EUMETSAT are OK for a mission running up to December 2017 (at least !!
 NASA/JPL and NOAA are OK up to June 2015; they will run a mission extension
- process in 2015
- Using Jason-1 experience, and after interleaved phase with Jason-3, one item to prepare : "where to put Jason-2 when it will become breakable ??"

thanks to all the teams (CNES, NOAA, EUMETSAT, NASA/JPL) a system running fine, with an excellent availability level

Jason-1 GDR-D reprocessing

- Activity decided during Boulder OSTST (2013)
- Not a complete reprocessing; just updating main parameters
- Conducted jointly by CNES and JPL
 - CNES
 - provide orbits
 - provide geophysical parameters
 - provide tools for creation new GDRs in NetCDF format
 - perform CALVAL on complete data set
 - JPL
 - provide reprocessed JMR series
 - perform the « reprocessing »
 - perform CALVAL on complete data set
- Schedule
 - almost all activities completed
 - release of new Jason-1 products planned early 2015

Thanks for your attention and also many thanks to the contributors !!

CNES

- C. Maréchal
- J. Sarda
- S. Haouchine
- JL. Mestre
- E. Bronner
- F. Bailly-Poirot
- N. Picot
- Jean-Damien Desjonquères
- Christian Jayles
- F. Didelot

- NOAA
 - D. Donahue J. Lillibridge
- EUMETSAT
 - S. Dieterle
- JPL
 - G. Shirtliffe
 - S. Brown

New frontiers of Altimetry – Lake Constance, Germany - October 2014