

Sea surface height variability observed by Ku and Ka-band altimeter data in the NW Mediterranean Sea

Objectives :

 SARAL/AltiKa Ka-band versus Jason-2 Ku-band SSHa data on a regional basis

. Any impact for the observation of the regional coastal circulation?

. Revisit the question of data editing for Ka-band altimetry

Region of interest: NW Mediterranean Sea

> Main feature of the circulation : the Northern Current (NC)

> Large variability (in both space and time)

> Associated to small length scales (0-50 km), under the lower resolution limit of standard altimeter products.

> Often close to the coast

 \rightarrow Interesting area to analyze the performance of Ka-band altimetry

LEGOS	Data used	СТОН

- > SARAL GDR-T (Patch2): cycles 1 to 11 (14/03/2013 to 02/04/2014)
- > Jason-2 GDR-D: cycles 173 to 209 (12/03/2013 to 15/03/2014)
- > 1-Hz measurements only for this study

 \succ SSHa data computed in the same way for Jason-2 and SARAL (same corrections used)

All SSHa observations located between 38-45° N and 0-12° E are considered

SSHa and editing conditions

Thresholds for the parameters used for Jason-2 and SARAL data editing procedure

✓ Reference :

Handbooks + CAL/VAL team recommendations

 ssha recomputed from GDR (Jason-2 ssha set to default if alt_echo_type=1)

Parameter	Validity conditions	
	Jason-2	SARAL/AltiKa
range_numval	50% of individual	50% of individual
	measurements, i.e: 10 ≤ x	measurements, i.e: 20 ≤ x
range_rms	0 ≤ x ≤ 20 cm	
model_dry_tropo_corr	-250 cm ≤ x ≤ -190 cm	
rad_wet_tropo_corr	-50 cm ≤ x ≤ -0.1 cm	-50 cm ≤ x ≤ -2 cm
iono_corr_alt	-10 cm ≤ x ≤ 4 cm	
sea_state_bias	-500 cm ≤ x ≤ 0 cm	-500 cm ≤ x ≤ 0.25 cm
ocean_tide_sol1	x ≤ 500 cm	
solid_earth_tide	x ≤ 100 cm	
pole_tide	x ≤ 15 cm	
swh	0 ≤ x ≤ 1100 cm	
sig0	7 dB ≤ x ≤ 30 dB	3 dB ≤ x ≤ 30 dB
wind_speed_alt	0 ≤ x ≤ 30 m/s	
off_nadir_angle_wf	$-0.2 \text{ deg}^2 \le x \le 0.64 \text{ deg}^2$	$-0.2 \text{ deg}^2 \le x \le 0.15 \text{ deg}^2$
sig0_rms	x ≤ 1 dB	
sig0_numval	50% i.e: 10 ≤ x	50% i.e: 20 ≤ x
Ssha	x ≤ 200 cm	
surface_type	Ocean	

SSHa and editing: SARAL/AltiKa vs Jason-2

Number of 1-Hz measurements over ocean and % of SSHa edited

→ Data available after edition are much more stable in time for SARAL/AltiKa than in the case of Jason-2

I EGO

% of SSHa data (relative to the total number of 1-Hz observation points) vs distance from coast – regional average

SSHa and editing: SARAL/AltiKa vs Jason-2

Origin of data loss (as a function of the editing condition)

Can we better observe the coastal dynamics with SARAL/AltiKa data?

Spectral analysis : a regional view

- J2 : track 146
- SARAL/AltiKa: track 57

11 cycles considered for both Jason-2 and AltiKa

→ Significantly less noise in SARAL/Altika data for spatial scales < 50 km
 → Same as what is observed globally (and is expected with Ka-band altimetry)
 → Better observation of ocean fine-scale dynamics

Can we better observe the coastal dynamics with SARAL/AltiKa data?

Velocities (m/s) derived from altimetry

- J2 : track 222
- SARAL/AltiKa: track 429

→ Information on coastal current variations seems more coherent with SARAL...

Can we better observe the coastal dynamics with SARAL/AltiKa data?

Velocities (m/s) derived from altimetry

- J2 : track 222
- SARAL/AltiKa: track 429

→ NC offshore extension: smaller and more stable

→ Generally larger NC magnitude

- Better performance of SARAL/AltiKa near the coast:

 → significant increase in the number of sea level data available near coastlines
- Editing: much less erroneous 1Hz SSHa data with SARAL
 → the classical editing approach works quite well
 → but what about 40-Hz measurements?
- Along-track spatial resolution at least as good as Jason-2 one (slightly better because higher signal-to-noise ratio)
 → velocity values derived seem less noisy
 - \rightarrow coastal currents seem more realistic but ...
- \rightarrow difficulty to quantify the gain of Ka-band altimetry in terms of coastal circulation observed

 \rightarrow Results really encouraging for coastal studies!

Perspectives

Moose - Mediterranean Ocean Observing System on Environment (>2010)

The implementation plan is a network based on a multisite system of continental-shelf and deep-sea fixed stations as well as Lagrangian platforms.

3D regional ocean circulation model (Symphonie, developed by the SIROCCO group).

\rightarrow Will really help quantifity the contribution of new/future altimeters for coastal ocean studies!