Numerical Modelling of Non-Tidal Ocean Dynamics for the Reduction of Spatio-Temporal Aliasing in Global Grids of Sea-Level Anomalies From Radar Altimetry

Henryk Dobslaw and Saskia Esselborn

German Research Centre for Geosciences (GFZ) Department 1: Geodesy dobslaw@gfz-potsdam.de

Background

- Mature barotropic de-aliasing product for altimetry
- Known issues regarding baroclinic component, oceanic loading ...
- GFZ in Potsdam (Germany) operates the global numerical ocean model MPIOM for particulary geodetic applications:

Crustal surface deformations due to non-tidal oceanic loading
 Time-variations in the gravity field due to ocean mass changes
 Excitations of Earth orientation changes due to ocean dynamics

- data products routinely span period 1976 present
- data is provided every 3 hours

isdc.gfz-potsdam.de/esmdata/

Relevance for OSTST Community

- GFZ model data provides non-tidal HF time-variable gravity field and crustal surface deformations due to loading at tracking stations: POD
 - On the effect of non-tidal atmospheric loading on altimetry orbits (talk on POD splinter, König et al.) On the long-term stability of altimetry satellites orbits (Poster POD01, Rudenko et al.)
- GFZ model data provides alternative dynamic atmospheric corrections for the de-aliasing of high-frequency sea level variations including steric and loading effects (this talk).

- MPIOM Model Configuration
 Atmospheric Tides
 Skill of model for Envisat, Saral, Jason-1 and Jason-2

MPIOM Configuration

- MPIOM from MPI-M Hamburg, Germany (Jungclaus et al., 2013)
- TP10L40 configuration: tri-polar grid with 1° spacing and 40 levels
- 3-hourly atmospheric forcing from ERA-Interim (1979-2006) and operational ECMWF data (since 2007)
- Considers also atmospheric surface pressure forcing
- No data assimilation!

Dobslaw and Esselborn: Modelling of Non-Tidal Ocean Dynamics

4

Spectral Analysis of Low-Degree Spherical Harmonics

6-hourly forcing including atmospheric tides 3-hourly forcing excluding atmospheric tides

Dobslaw and Esselborn: Modelling of Non-Tidal Ocean Dynamics

5

HELMHOLTZ

Spectral Analysis of Low-Degree Spherical Harmonics

6-hourly forcing including atmospheric tides 3-hourly forcing excluding atmospheric tides

Dobslaw and Esselborn: Modelling of Non-Tidal Ocean Dynamics

Relevant Frequencies of Atmospheric Tides

Doodson Code	Name	Argument	Frequency (° h ⁻¹)
163.555	P ₁	t – h – 90°	14.9589314
164.555	S ₁	t + 180°	15.000000
165.555	Κ ₁	t + h + 90°	15.0410686
245.655	N_2	2t – 3s + 2h + p	28.4397295
255.555	M_2	2t – 2s + 2h	28.9841042
265.455	L_2	2t – s + 2h – p + 180°	29.5284789
272.556	T ₂	2t – h + p [′]	29.9589333
273.555	S ₂	2t	30.000000
274.554	R_2	2t + h – p′ + 180°	30.0410667
381.555	T ₃	3t – h	44.9589300
382.555	S ₃	3t	45.000000
383.555	R_3	3t + h	45.0410700

Dobslaw and Esselborn: Modelling of Non-Tidal Ocean Dynamics

7

Removed Ocean Response to Atmospheric Tides (1)

1.6 mm 40 mm 3.5 mm

Dobslaw and Esselborn: Modelling of Non-Tidal Ocean Dynamics

8

Removed Ocean Response to Atmospheric Tides (2)

0.6 mm

3 mm

0.3 mm

9

Dobslaw and Esselborn: Modelling of Non-Tidal Ocean Dynamics

Dynamic Atmospheric Correction from MPI-OM: DAC_{GFZ}

SLA from model:

- wind- and pressure-driven bottom pressure anomalies
- anomalies of steric height
- deformations of the sea-floor due to bottom pressure variations
- 12 tidal components estimated and removed
- Iong-term mean 2003 2014 subtracted

Test of model data

- 2 Test periods:
 03/2009-02/2010 (Envisat, Jason-1, Jason-2)
 01/2014-12/2014 (Jason-2, Saral)
- Colinear analysis for each mission applying: no atmospheric correction, inverse barometer correction, DAC_{CCI}, DAC_{GFZ}
- interpolation to daily SLA maps (1° x 1°)
- apply high-pass filter with cut-off frequency of 20 days (3rd order Butterworth)
- calculate skill of the three models to explain uncorrected data

Skill of DAC_{CCI} and DAC_{GFZ} (Envisat & Jason-1 & Jason-2, 3/2009-2/2010)

Dobslaw and Esselborn: Modelling of Non-Tidal Ocean Dynamics

HELMHOLTZ

Global mean skill (area weighting) to explain uncorrected data

<1/20 d	Jason-1	Jason-2	Envisat	Saral
in.Baro.	34%	34/34%	33%	33%
DAC _{CCI}	40%	41/40%	38%	39%
DAC _{GFZ}	42%	44/42%	40%	42%

Dobslaw and Esselborn: Modelling of Non-Tidal Ocean Dynamics

GEMEINSCHAFT

Summary

- GFZ routinely provides numerical model data to account for non-tidal ocean signals in observations from various geodetic techniques: surface deformations, gravity field, Earth orientation
- 12 frequencies of atmospheric tides are routinely removed: (P₁-S₁-K₁), (N₂-M₂-L₂), (T₂-S₂-R₂), (T₃-S₃-R₃)
- the effects of the inclusion of steric and loading components for de-aliasing of Envisat, Jason-1, Jason-2 and Saral altimeter data have been studied
- Loading: small improvements over most ocean areas
- Steric: considerable improvements in Tropical regions, degradation in most other areas, probably related to spatial resolution of model

isdc.gfz-potsdam.de/esmdata/

Thank You for Your Attention

Dobslaw and Esselborn: Modelling of Non-Tidal Ocean Dynamics

HELMHOLTZ