# ALTICRYO: A CNES Altimetry Concept Study For Cryosphere Monitoring OSTST 2017 – Miami, FL, USA

Amandine Guillot <sup>(1)</sup>, Frédérique Rémy <sup>(2)</sup>, <u>Alexandre Guérin</u> <sup>(1)</sup>, Jean-Luc Courrière <sup>(1)</sup>, Anne Lifermann <sup>(1)</sup>, Yves Le Roy <sup>(3)</sup>



(1) CNES
(2) LEGOS
(3) TAS

## Outline



| Context                     | 3  |
|-----------------------------|----|
| Objectives and users' needs | 4  |
| Altimeter specifications    | 6  |
| Instrumental configuration  | 11 |
| Perspectives                | 17 |



2 © cnes

# Context

## Programmatic context

- CNES: scientific community asks for AltiKa-2  $\succ$
- ESA: studies on Cryosat Follow-on
- EU: polar component of Copernicus evolution and NG

## Phase 0 study

- Preliminary design study
- Study of altimetry system (mission/instrument/processing) dedicated to the cryosphere monitoring = AltiCryo
  - Specific needs taken as main mission objectives





3 O cnes

## **Objectives**

Propose an altimetry concept optimized for cryosphere (sea ice and ice sheets) and based on the SARAL/AltiKa heritage

- Ka-Band
- Range resolution ~30cm
- A single antenna shared by the altimeter and the radiometer
- ... taking into account lessons learned from AltiKa & Cryosat
  - Improve the observation of the steep zones
  - Avoid waveforms saturation
- Potential platform = Proteus (PL=300kg/300W) or Myriade Ev° (PL=150kg/150W)
  - No interferometric capability
  - Compact altimeter design









## Users needs

#### Based on current knowledge and physical measurement capabilities

- User Requirement Document for the AltiCryo study
- Notes from User meeting held in Paris in February 2017 (and co-organized with ESA)

### Major critical users requirements

- Very high latitudes coverage to monitor Arctic multi-year ice and West-Antarctica: ~90° inclination
- Need of high spatial resolution and precision: SAR or SARIn mode
- Improved knowledge of snow penetration effects and snow thickness measurements over sea ice: bi-frequency Ka/Ku altimeter
- Temporal resolution vs. inter-track spacing: Repeat cycle  $\approx$  1 month
- Low product delivery latency: 24 hours for data assimilation down to few hours for navigation



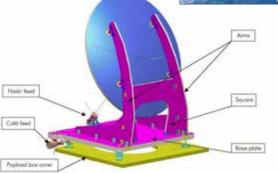


Orbit

- ~720 km, with an inclination of 88° (idem CryoSat)
  - No Sun-Synchronous Orbit with i> 88° for the considered altitudes range

#### Antenna

- Shared by altimeter and radiometer (K/Ka or Ku/K/Ka)
- Diameter of 1 m or 1.2 m


#### Radar mode

- Ka/Ku-bands altimeter with a SAR mode complying with the following conditions:
  - PRF  $\geq$  1.2\*Bdop  $\rightarrow$  to <u>avoid ambiguities</u>
  - <u>PRF (Ku) = PRF(Ka)</u>
  - <u>Range resolution of AltiKa: B=480MHz for Ka and Ku-band</u>
  - o Number of uncorrelated echoes per second allowing the computation of a PLRM echo → <u>link with past LRM missions</u>



Image credit:

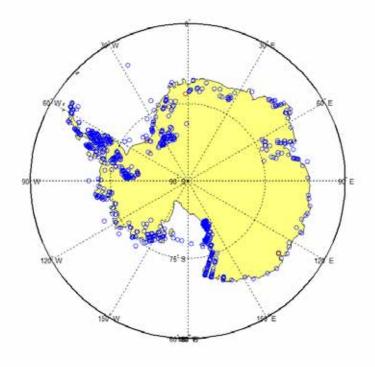
6 O cnes





# **Altimeter Specifications (2/5)**

## Tracking


- Closed loop
  - Difficulties encountered over margins in OL on S3A
- Increased tracking window length
- Median or EDP algorithms

## Tracking band

- Land ice
  - Large antenna aperture to cover ice margins
    - Observable slope = half antenna aperture
    - Analysis of SARAL/AltiKa tracks over Antarctica

#### ➔ Ku-band

#### AltiKa data gaps over ice margins




7 O cnes



#### Tracking band

- Sea ice:
  - Narrow antenna aperture to limit off-nadir tracking
    - Analysis of S3A range on a sea ice track: Tracking in Ku-band beyond the Ka-band aperture?

#### → Ka-band



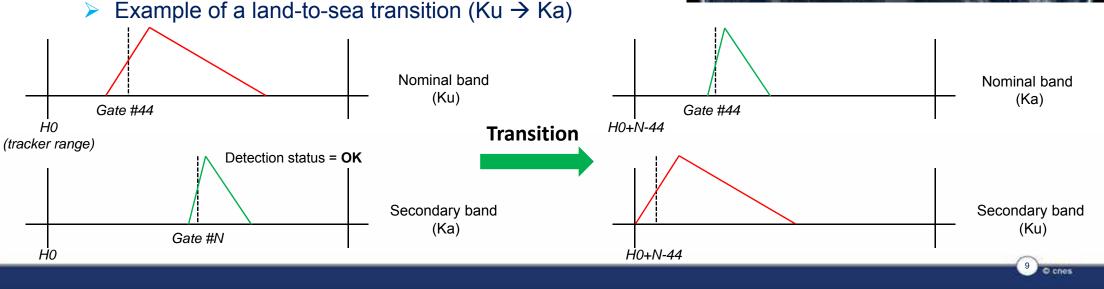


<u>- -</u>

Sentinel-3 <u>range in</u> <u>closed-loop</u> mode (tracker+epoch), with respect to <u>expected nadir</u> <u>range</u> (orbit – MSS).

Comparison with Ka footprint.

8 © cnes

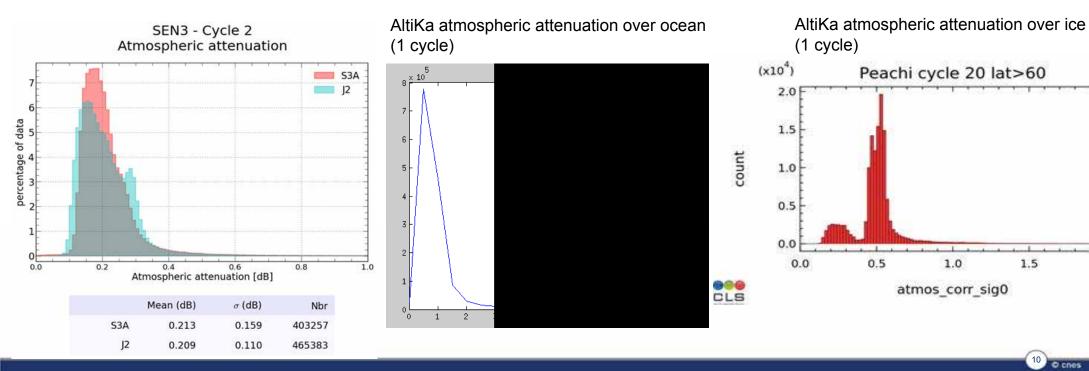



## **Altimeter Specifications (4/5)**

## Tracking transitions

- Same tracking window defined for the 2 bands
- Secondary band controlled by the nominal one
- A tracking status is continuously computed in the secondary band (echo detection, rising edge position)





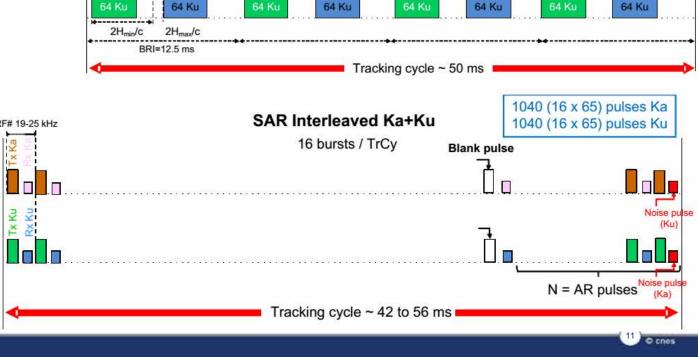



2.0

## **Altimeter Specifications (5/5)**

- Atmospheric attenuation: typical values instead of worst case ones
  - Ku: 0.3dB based on J3 and S3 feedback (instead of 1dB)
  - Ka: 1dB based on AltiKa feedback (instead of 3dB)




## Instrumental configuration (1/6) -> TAS study

Simultaneous Tx/Rx in both Ka- & Ku- bands

- SAR CB Ka+Ku **Closed-Burst** 4 bursts / TrCy Tx burst Rx burst 64 Ka 64 Ka 64 Ka 64 Ka 64 Ka For 1.2m antenna: res(Ka) ~ 100m 64 Ku 64 Ku 64 Ku 64 Ku 64 Ku res(Ku) ~ 275m 2H<sub>min</sub>/c 2H<sub>max</sub>/c BRI=12.5 ms PRF# 19-25 kHz 16 bursts / TrCy T<sub>x</sub>Ka
- Interleaved >

0

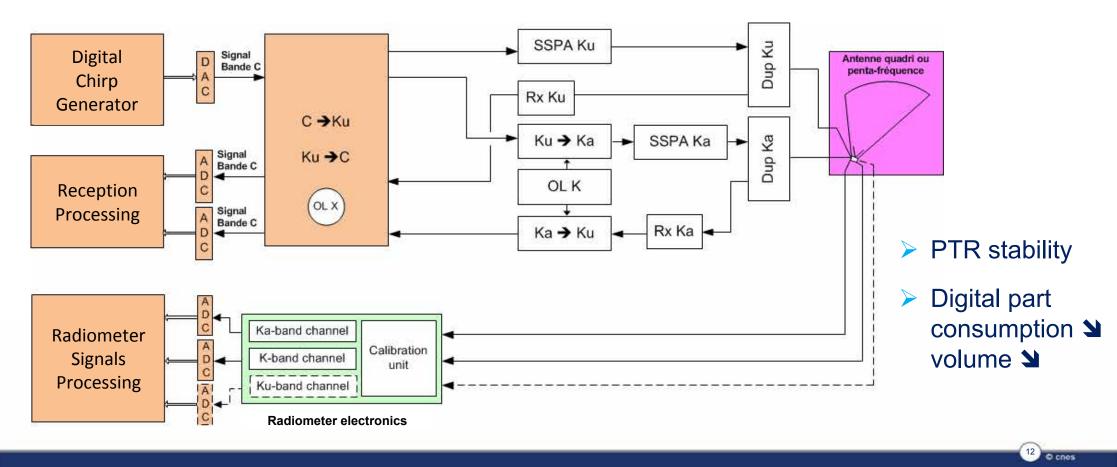
- Variable PRI  $\mathbf{O}$
- PLRM = LRM0
- Burst size can be 0 chosen to have  $res(Ka) \sim res(Ku)$





64 Ka

64 Ka


256 pulses Ka 256 pulses Ku

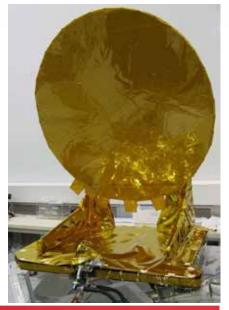
64 Ka

# Instrumental configuration (2/6)



## Choice of a digital architecture




# Instrumental configuration (3/6)

#### Antenna trade-off

- Difficult to design a penta-frequencies antenna satisfying the efficiency requirements. Problems encountered with the additional radiometer Ku-band frequency.
- However, good estimation of the wet troposphere (and classification of ice types) seems to be achievable with only the K- and Ka-bands on the radiometer
  - o Recent improvement in wet tropospheric correction inversion over ocean
  - Availability of the altimeter sigma0 in Ku-band & in Ka-band
  - <u>Co-localization</u> of altimeter and radiometer signals.

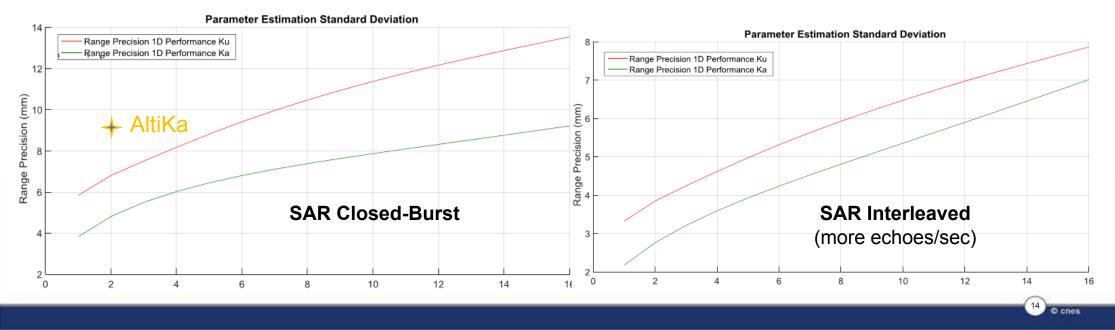
→ A quadri-frequencies antenna (Ka/Ku altimeter, K/Ka radiometer) satisfies the needs







13 O cnes


# Instrumental configuration (4/6)

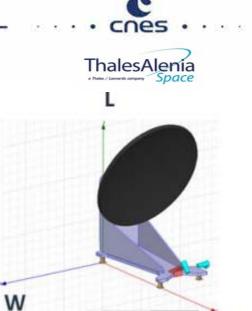
## Link budgets

OK in SAR interleaved mode with 1.2m antenna (and also in SAR CB)

## 1hz simulated range noise (MLE3) as a function of SWH

• Performance over ocean = well-known reference








# Instrumental configuration (5/6)

## MVC budgets

| AltiCryo Instrument | Mass  | Volume (LxWxH)         | Consumption<br>SAR Closed-Burst | Consumption<br>SAR Interleaved |
|---------------------|-------|------------------------|---------------------------------|--------------------------------|
| DPU                 | 5 kg  | 330 x 120 x 270 mm3    | 40 W                            | 40 W                           |
| RFU                 | 13 kg | 415 x 350 x 240 mm3    | 50 W                            | 105 W                          |
| Antenna Ø 1.2m      | 18 kg | 1450 x 1200 x 1300 mm3 |                                 |                                |
| Harness             | 3 kg  |                        |                                 |                                |
|                     |       |                        |                                 |                                |
| Total               | 39 kg |                        | 90 W                            | ( 145 W )                      |
|                     |       |                        |                                 |                                |

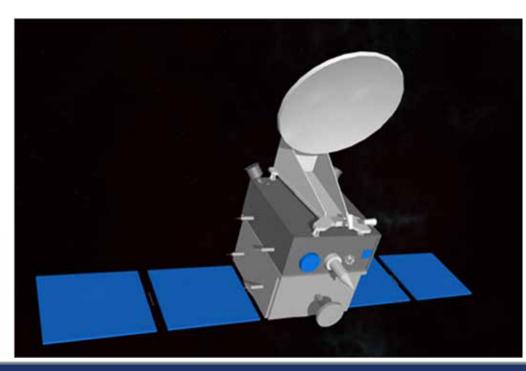


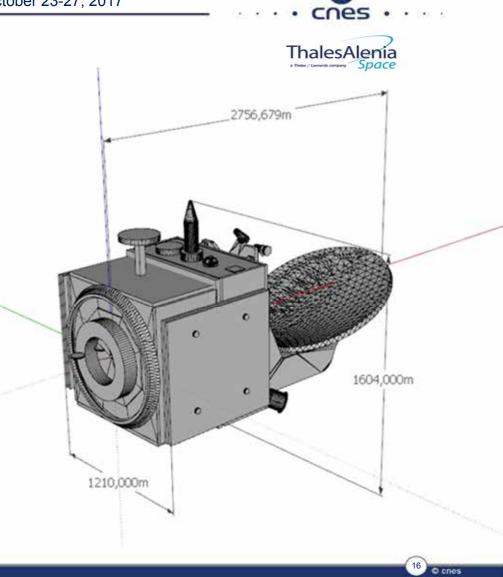
#### TM budgets

| AltiCryo Mode    | Data Rate | Assumptions                                           |
|------------------|-----------|-------------------------------------------------------|
|                  |           |                                                       |
| Sea surfaces     |           |                                                       |
| SAR Closed-Burst | 42 Mbps   | Header: 126 bytes – TrC=50ms – 8 bits/sample I or Q   |
| SAR Interleaved  | 162 Mbps  | Header: 126 bytes – TrC=52.9ms – 8 bits/sample I or Q |
|                  |           |                                                       |
| Land surfaces    |           |                                                       |
| SAR Closed-Burst | 84 Mbps   | Header: 126 bytes – TrC=50ms – 8 bits/sample I or Q   |
| SAR Interleaved  | 323 Mbps  | Header: 126 bytes – TrC=52.9ms – 8 bits/sample I or Q |

Reduced to **100 W** with middle-term technologies (GaN, power supply,...)

н


15 © cnes


 Reduction possible for small PF
(Tracking window size, on-board data processing)

# Instrumental configuration (6/6)

## Accommodation

- Antenna configuration ø 1.2m
- Proteus-150 (= Myriade Evolution)







17 O cnes

## Perspectives

#### Processing: SAR/SARin comparison over ice margins and sea ice

- Ice margins: to compare the slope correction in SAR (based on auxiliary DEM) and SARin mode (based on the measured phase difference at POCA)
- Sea ice: to compare the off-nadir lead detection in SAR mode (based on waveform classification + sigma0 threshold + local maximum selection) with the actual cross-track distance to nadir measured in SARin mode (based on the phase difference)
- On-going study with CLS, should end next January

For now, no new altimetry mission decided on CNES side...

... but this study also contributes to draw the best CryoSat follow-on concept!





Thank you

## For further information:

amandine.guillot@cnes.fr

alexandre.guerin@cnes.fr





... back-up slides ...



# **Altimeter Specifications**

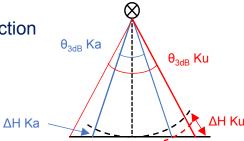
#### **Tracking window** \*

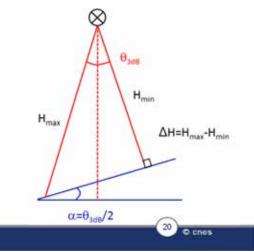
Choice of the tracking window length (L)  $\succ$ 

Ka - 1 m

Sea ice:  $L > \Delta H$  = Difference between distance in nadir direction and in 3dB beam direction 0

Ka - 1.2 m


Ku - 1.2 m


| Configuration                | Surfaces de mer | Surfaces de mer | Surfaces de mer | Surfaces de mer |
|------------------------------|-----------------|-----------------|-----------------|-----------------|
|                              |                 |                 |                 |                 |
| θ 3 dB                       | 0,61°           | 1,42°           | 0,50°           | 1,18°           |
| $\Delta$ H à $\theta$ 3dB/2  | 10,2 m          | 55,3 m          | 6,9 m           | 38,2 m          |
|                              |                 |                 |                 |                 |
| Longueur fenêtre de tracking | 64,0 m          | 64,0 m          | 64,0 m          | 64,0 m          |
| Durée fenêtre de tracking    | 0,43 us         | 0,43 us         | 0,43 us         | 0,43 us         |
|                              |                 |                 |                 |                 |
|                              |                 |                 |                 |                 |

Ku - 1 m

Land ice:  $L > \Delta H$  = Difference between distance min and max at 3dB beam edge 0 for a slope of  $\theta$ 3dB/2

| Configuration                                             | Ka - 1 m<br>Surfaces de terre | Ku - 1 m<br>Surfaces de terre | Ka - 1.2 m<br>Surfaces de terre | Ku - 1.2 m<br>Surfaces de terre |
|-----------------------------------------------------------|-------------------------------|-------------------------------|---------------------------------|---------------------------------|
|                                                           |                               |                               |                                 |                                 |
| θ 3 dB                                                    | 0,61°                         | 1,42°                         | 0,50°                           | 1,18°                           |
| $\Delta$ H dans faisceau 3 dB pour pente = $\theta$ 3dB/2 | 40,8 m                        | 221,1 m                       | 27,4 m                          | 152,7 m                         |
|                                                           |                               |                               |                                 |                                 |
| Longueur fenêtre de tracking                              | 64,0 m                        | 255,8 m                       | 64,0 m                          | 255,8 m                         |
| Durée fenêtre de tracking                                 | 0,43 us                       | 1,71 us                       | 0,43 us                         | 1,71 us                         |
|                                                           |                               |                               |                                 |                                 |





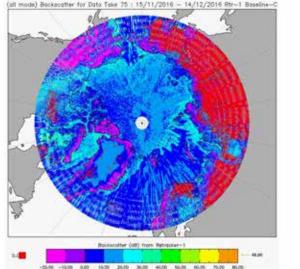


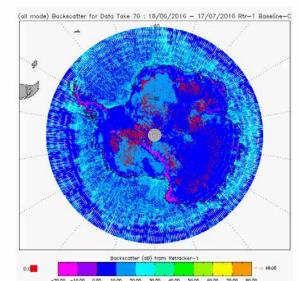
## **Altimeter Specifications**

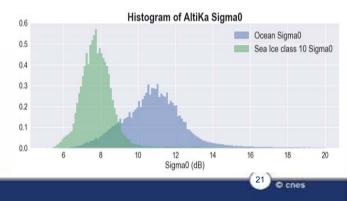
Sigma0 assumptions

#### Bande Ku – Spécifications Cryosat-2 :

| Mode     | Echo type                                | σ0 min | SNR (*) |
|----------|------------------------------------------|--------|---------|
| LRM      | Ocean echoes + ice echoes                | 0 dB   | 8 dB    |
| SAR CB   | Ocean echoes + ice echoes                | 0 dB   | 18 dB   |
| SARIn CB | Ocean echoes + ices echoes (ice margins) | -10 dB | 18 dB   |


(\*) : SAR processing gain (#12 dB) included in SNR


#### Tracking sur surfaces de terre :


- → Spéc : SNR (\*\*) = 6 dB @ σ0 = 0 dB
- → Objectif : SNR (\*\*) = 6 dB @ σ0 = -10 dB

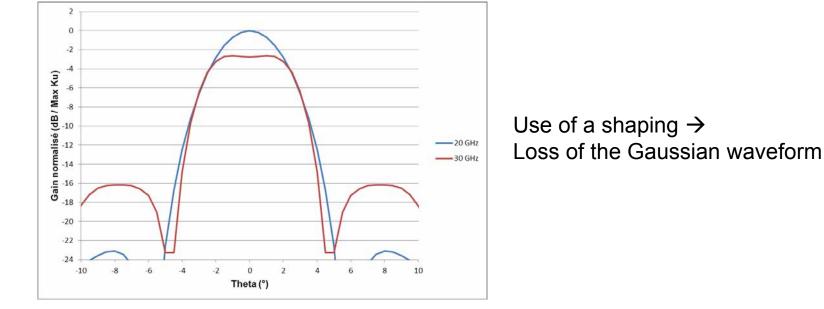
#### Bande Ka - Tracking sur surfaces de mer :

- → Spéc : SNR (\*\*) = 6 dB @ σ0 = 5 dB
- → Objectif : SNR (\*\*) = 6 dB @ σ0 = 0 dB
- (\*\*) : SNR avant traitement SAR












22 O cnes

## Instrumental configuration

#### Ice sea users asked for the same aperture in both bandwidth



- Unacceptable for the PRF: PRF = 46.9 kHz (1.2m antenna)
- Unacceptable for the link budget :
  - SNR (Ka SAR) = -1.4dB (1.2m antenna), to be compared with th CY req. of 18dB!