

The ICESat-2 Inland Water Height Data Product: Overview and Evaluation Using High Altitude Lidar Observations

Michael Jasinski Hydrological Sciences Lab NASA GSFC

J. Stoll^{1,2}, C. Arp³, C. Birkett⁴, K. Brunt⁴, M. Carroll², W. Cook¹, C. Hiemstra⁶, B. Jones⁷, T. Markus¹, T. Neumann¹, M. Ondrusek⁸, T. Pavelsky⁹, E. Stengel⁸

¹NASA GSFC, ²SSAI, ³U. Alaska Fairbanks, ⁴ESSIC UMd, ⁵Sigma Space, ⁶CRREL, ⁷USGS Alaska Sci Cntr , ⁸NOAA STAR, ⁹UNC Chapel Hill

Mission Summary

Instrument: Advanced Topographic Laser Altimeter System (ATLAS)

- Micro-pulse, single-photon detection
- 6 beams, 3 pairs of "weak/strong" (25, 100 $\mu\text{J})$
- 10 kHz pulse repetition rate
- 532 nm

Orbit: 500 km, non-sun-synch, 92° inclination

- Repeat: 91 day, ~30 day subcycle
- Launch: Sept. 12, 2018

Lifetime: 3 yrs, consumables for 7

ICESat-2 Data Products

ID NAME

ATL03 Geolocated photons

ATL04 Uncalibrated Backscatter Profiles

ATL06 Land Ice Elevation

ATL07 Arctic/Antarctic Sea Ice Elevation

ATL08 Land and Vegetation Height

ATL09 Atmosphere Backscatter & Clouds ATL10 Arctic/Antarctic Sea Ice Freeboard

ATL10 Arctic/Antarctic Sea ice Freeboard ATL11 Antarctica / Greenland Ice Sheet Heights ATL12 Ocean Elevation

★ATL13 Inland Water Height

ATL14 Antarctica/Greenland Ice Sheet H(t) Gridded
ATL15 Antarctica/Greenland Ice Sheet dh/dt Gridded
ATL16 ATLAS Atmosphere Weekly
ATL17 ATLAS Atmosphere Monthly
ATL18 Land/Canopy Gridded
ATL19 Mean Sea Surface (MSS)
ATL20 Arctic / Antarctic Gridded Sea Ice Freeboard
ATL21 Arctic/Antarctic Gridded SSH w/in Sea Ice

DESCRIPTION

Precise latitude, longitude and elevation for every received photon

Along-track atmospheric backscatter

Surface height for each beam with along- and across-track slopes Height of sea ice and open water leads at varying length scale Height of ground including canopy surface & cover percentage Along-track cloud and other atmosphere layer heights, blowing snow, optical depth. Sea ice freeboard @ specific spatial scales. Statistics of sea surface and sea ice heights. Time series of height at points on the ice sheet,

Surface height at specific length scale, including height distribution

Along-track inland and near shore water surface height distribution within water mask

Height maps of each ice sheet for each year based on all available elevation data.

ATL15 Antarctica/Greenland Ice Sheet dh/dt Gridded Height change maps for each ice sheet, for each mission year

Polar cloud fraction, blowing snow frequency, ground detection frequency. Polar cloud fraction, blowing snow frequency, ground detection frequency. Gridded ground surface height, canopy height, and canopy cover estimates. Gridded ocean height product.

Gridded sea ice freeboard.

Gridded monthly sea surface height inside the sea ice cover.

ICESat-2 Inland Water Data Product

ICESat-2 Inland Water Coverage

ICESat-2 Inland Water Coverage

ICESat-2 Observation Strategy:

"Mapping" and "Repeat" Zones

Product, OSTSTM 10-24-2017, MFJ

High Latitude Coverage

Alaska

Typical 91-day pattern

Typical Orbits in Mid-Latitudes

Testing ICESat-2 Inland Water Algorithm: Multiple Altimeter Beam Experimental Lidar (MABEL)

ICESat-2/ATLAS

ER2/MABEL

Operational altitude	600 km	20 km		
Wavelength	532 nm	532 and 1064 nm		
Telescope diameter	1 m	6 inches		
Laser PRF	10 kHz	5 kHz		
Laser pulse energy	25µJ (weak) & 100µJ (strong) beam	3-5 μJ per beam		
Laser footprint diameter	17 μrad (14 m)	100 µrad (2 m)		
Swath width	+/- 3 km	+/- 1.05 km		

IC2 Inland Water Product, OSTSTM 10-24-2017, MFJ

MABEL: Atlantic Coast near Virginia Beach

MABEL: Atlantic Coast near Virginia Beach

IC2 Inland Water Product, OSTSTM 10-24-2017, MFJ

 $\overset{\star}{\star} \overset{\star}{\star}$

MABEL Summary

FLIGHT DESCRIPTIONS								
Site		Ches Bay	Ches Bay	Ches Bay	VA Beach	Lake Mead		
			(mod bckgr)	(low bckgr)				
Year	-	2012	2013	2013	2013	2012		
Date	-	Sep-22	Sep-25	Sep-25	Sep-20	Feb-24		
Time	UTC	00:56-57	16:51-52	16:51-52	22:23-24	06:15-17		
Local Time	-	20:56-57	12:51-52	12:51-52	18:23-24	22:15-17		
IN-SITU OBSERVATIONS								
Sky Condition ^a	-	Clear	Partly Cloudy	Mostly Clear	Mostly Clear	Mostly Clear		
Wind Speed	m/s	5.4 ^b	3.7 ^b	3.7 ^b	4.2 ^d	8.5 ^e		
Wind Direction	Deg	162 ^b	41 ^b	41 ^b	93 ^d	27 ^e		
Turbidity	NTU	3.9°	2.9 ^b	2.9 ^b	2.2 ^d	1.6 ^f		
Mean Water Surface	m	-	-	-	-	345.5 ^g		
Signif. Wave Ht ^j	m	0.35	0.17	0.17	0.58	-		
K ₅₃₂ , Diff. Attn. Coef.	m ⁻¹	-	0.45 ^p	0.52 ^p	-	-		
DERIVED WATER CHARACTERISTICS FROM MABEL OBSERVATIONS								
Background Rate ^m	m ⁻²	0.00002	0.011	0.0053	0.0003	0.00008		
Water Signal Raten	m ⁻²	0.36	0.56	2.20	0.41	2.9		
LSBR ₀ Depth ^k	m	-6.8	-1.3	-3.7	-9.3	-9.2		
Water Surface St Dev ¹	m	0.11	0.088	0.065	0.21	0.14		
Mean Geodetic Hth	m	-36.8	-40.0	-40.0	-43.2	315.9		
Mean Orthom Ht ⁱ	m	-1.4	-4.6	-4.6	-3.6	344.8		
Height Precision	cm	5.0	4.0	2.0	4.7	1.8		
α_{5332} , Subs. Attn. Coef.	m ⁻¹	0.69	0.91	0.56	0.55	0.40		
$\alpha_{5332} \times LSBR_0 \text{ (mean = 3.3)}$	-	4.7	1.3	2.1	5.1	3.4		

Jasinski et al., 2016. J. Coastal Research

CAL/VAL and Monitoring

Strategy

- 1. Monitor lakes currently included in global lake databases, e.g.
 - G-REALM (230)
 - Globolakes (960)
 - HYDROWEB (100)
 - Other well monitored lakes & lake databases
 - (E.g. Issyk-Kul, Great Lakes, Tahoe, Mead)
- 2. CAL/VAL collaborating w/already planned field experiments
 - Arctic Lakes Ice Systems Science (ALISS)
 - Arctic-Boreal Vulnerability Experiment (ABoVE)
 - USGS Coastal National Elevation Database (CoNED)
 - Arctic Coastal Land Interactions (COLORS)

Alaska CAL/VAL

- Lake Teshekpuk
- Inigot
- Toolik Lake
- Yukon River delta
- Mackenzie River delta
- Lake Tazlina

Conclusions

- **1. Global ICESat-2 Inland Water Height Data Product is under development**
- 2. Tested using high altitude MABEL observations
 - precision of ~5 cm/100 m segments under clear skies

3. CAL/VAL and monitoring:

- Comparison with existing global lake databases
- Leveraging off existing & planned field experiments
- looking for collaborations.....

Thank You! Michael.F.Jasinski@nasa.gov

https://icesat.gsfc.nasa.gov/

https://icesat-2.gsfc.nasa.gov/

IC2 Inland Water Product, OSTSTM 10-24-2017, MFJ