

OSTST Meeting, POD Splinter *Ponta Delgada, September 2018*

Precise Orbit Determination status on Jason-2&3 and Sentinel-3A&B by CNES/CLS IDS Analysis Center

Hugues Capdeville, Jean-Michel Lemoine, Adrien Mezerette CNES/CLS AC (GRG)

Outline

POD results

- Processing strategy
- OPR and DORIS RMS of fit
- Independent SLR RMS of fit

Orbit comparison

- Independent SLR RMS of fit
- Comparison to GPS-only orbits and external orbits

□ Introduction of Sentinel solutions in the multi-satellite solution

□Conclusions and perspectives

Processing strategy

(we took the IERS conventions and the IDS recommendations)

Software	GINS/DYNAMO			
DORIS data	RINEX 3.0 phase measurement converted to DOPPLER			
Station Coordinates	ITRF2014 (DPOD2014)			
Gravity Field	EIGEN-GRGS.RL03-v2.MEAN-FIELD with mean slope extrapolation			
DORIS Troposphere	VMF1 + one gradient per station in North & East directions			
Attitude Model	for Jasons: nominal law likeTopex for Sentinel-3s: nominal law like Envisat			
Surfaces Forces & Estimated Parameters	Box-wing model for solar radiation,drag, Albedo and IR Macromodel available at : <i>ftp://ftp.ids-doris.org/pub/ids/satellites/DORISSatelliteModels.pdf</i> Radiation pressure scale coefficient : 1 coef/day but strongly constrained to: 0.99 for Jason and 1.0 for Sentinel-3 OPR empiricals: 2 coeff cos-sin /orbital period in normal direction and 2 coeff cos-sin /orbital period in tangential direction (per arc) Drag coefficients adjusted: 1 coef/4 hour for Sentinel-3 and 1 coef/half day for Jason			
Time span processing	From June 2016 to August 2018 3.5-day arcs with a cut-off angle of 12°			

POD Summary

Introduction of Sentinel-3B in the GRG processing chain

DORIS RMS of fit and SLR external validation

OPR Acceleration Amplitude:

Along-track and Cross-track / Radiation pressure coefficient

Mean of 115 weeks (from June 2016 to August 2018) and 10 weeks for S3B

SATELLITE	DORIS RMS (mm/s)	SLR RMS (cm)	OPR amplitude average (10 ⁻⁹ m/s ²)		Solar radiation
			Along-track	Cross-track	coefficient
Jason-2	0.329	1.8	2.4	2.2	0.97
Jason-3	0.352	1.9	1.3	2.5	0.99
Sentinel-3A	0.362	1.4	2.3	1.9	1.00
Sentinel-3B	0.381	1.5	1.8	2.3	1.00

•For the two directions, Along-track and Cross-track, the mean amplitudes are lower than 4x10⁻⁹ m/s², reflecting a satisfying level in the modeling of the satellite macromodels and the attitude law.

DORIS RMS of fit

Jason-2

Jason-3

• For Jason-3, the level of DORIS RMS residuals is slightly higher compared to Jason-2, explained by its higher sensitivity to the SAA.

There is a 60 days periodic signal for both satellites.

□ Strategy to mitigate the SAA effect on Jason satellites Estimation of the beacon frequency Polynomial on SAA station per pass

Classical processing: one Frequency Bias adjusted per pass. With strategy: Frequency Polynomial (degree 4) adjusted per pass.

Jason-2

- The DORIS residuals are lower when we apply the strategy of polynomial adjusting frequency per pass for SAA stations.
- The impact is significant for SAA stations and the number of measurements is higher.

Jason-2

Jason-3

The SLR RMS residuals on Jason-2 and Jason-3 orbits are at a good level.

DORIS RMS of fit

Sentinel-3A

Sentinel-3B

• The level of DORIS RMS residuals is slightly higher for Sentinel-3B.

Sentinel-3A

Sentinel-3B

• The SLR RMS residuals on Sentinel-3A and Sentinel-3B orbits are at a good level.

Comparison to CNES (GDR-E) / JPL orbits Independent SLR RMS of fit

Jason-2

Jason-3

The SLR RMS residuals on Jason-2 and Jason-3 orbits are at a good level.
The level is comparable but slightly higher to the others orbits evaluated, CNES-GDR-E and JPL.

Comparison to CNES (GDR-E) / CPOD orbits Independent SLR RMS of fit

The SLR RMS residuals on Sentinel3-A and Sentinel-3B orbits are at a good level.

• The level is comparable to the others orbits evaluated, CNES-GDR-E and CPOD.

□ Comparison to CNES (GDR-E) orbits Jason-2 orbit differences

• There is a good agreement between the orbits calculated with GINS and ZOOM (GDR-E), there is a 60 days periodic signal in the radial component.

□ Comparison to CNES (GDR-E) and JPL orbits Jason-3 orbit differences

REF = GRG orbit

There is a good agreement with the other orbits but there is an along-track bias (>1 cm) which could be explained by the difference in time tagging.

In radial component there is also a bias and a 60 days periodic signal.

□ Comparison to CNES (GDR-E) and CPOD orbits Sentinel-3A orbit differences

REF = GRG orbit

RMS of orbit differences (in cm)

Mean of orbit differences (in cm)

For Sentinel-3A, the along-track bias is less important.
In radial component, the bias is higher with CPOD orbit.

□ Comparison to CNES (GDR-E) and CPOD orbits Sentinel-3B orbit differences

REF = GRG orbit

RMS of orbit differences (in cm)

Mean of orbit differences (in cm)

The agreement is good but there is an along-track bias (~ -7 mm) vs GDR-E orbit.

The comparison to CPOD orbit gives better results

Comparison to CNES (GDR-E) / JPL orbits Radial geographically correlated errors

Jason-3 GDR-E – REF (in cm)

0° 30° 60° 90° 120° 15

0.9 0.8 0.7

0.6 0.5

0.3 0.2 0.1

0.0

-0.5

-0.7 -0.8 -0.9

Mean of 115 weeks (from June 2016 to August 2018) (2° by 2° grids)

REF = GRG orbit

Jason-2 GDR-E – REF (in cm)

Jason-3 JPL – REF (in cm)

There is a good agreement between CNES/CLS and CNES GDR-E orbits
An East/West patches for radial geographical systematic differences with JPL orbits.

Comparison to CNES (GDR-E) / CPOD orbits Radial geographically correlated errors

> Mean of 115 weeks (from June 2016 to August 2018) (2° by 2° grids)

Sentinel-3A GDR-E – REF (in cm) **REF = GRG orbit**

Sentinel-3A CPOD – REF (in cm)

There is a better agreement between CNES/CLS and CNES GDR-E orbits

Add Sentinel-3 single satellite solutions in the multi-satellite solution Multi-satellite Solution (weekly) compared to DPOD2014 (from June 2016 to August 2018) Solution 1: Jason-2 + Cryosat-2 + HY-2A + Saral + Jason-3 Solution 2: Solution 1 + Sentinel-3A + Sentinel-3B

The addition of Sentinel-3 solutions has not a big impact on the multi-satellite

Conclusions and perspectives

Status of POD for Jason-2&3 and Sentinel-3A&B satellites

- The Sentinel-3B satellite was added in the DORIS processing chain of the CNES/CLS Analysis Center.
- The POD results are of good quality but the DORIS RMS for Jason-3 and Sentinel-3 satellites are still higher than the other DORIS satellites. For Jason-3, that could be explained by the SAA effect.
- The orbit comparisons give good agreement with CNES GDR-E and CPOD orbits.
- The Sentinel solutions were added in the multi-satellite solution which will be provided to IDS combination center

Future work

- Using quaternions for the s/c body and solar array for Jason-2 and Jason-3 (in progress)
- Comparison to GPS-only and DORIS-GPS orbits
 - Preparation to the next ITRF: Implementation of models recommended by IERS (linear mean pole model
 - FES2014, ...)
 - Analyze Geocenter and Scale factor from single satellite solutions (in progress)

