

Ocean Surface Topography Science Team Meeting Precise Orbit Determination Splinter

JASON-2, JASON-3 and SENTINEL-3A/B POD STATUS

John Moyard, Alexandre Couhert, Eva Jalabert, Flavien Mercier, Sabine Houry, Hanane Ait Lakbir, Clément Masson

27/09/2018

Ponta Delgada, PORTUGAL

2 © cnes

- JASON-2 & JASON-3 & SENTINEL-3A/B
- JPL-NASA/GSFC COMPARISONS
- PLANNED SWITCHS FROM POE-E TO POE-F
- · CONCLUSION
- •

	POE-E	POE-F
Surface forces	Atmospheric model : DTM-13 for Jason satellites, HY-2A , and MSIS-86 for other satellites	Atmospheric model : DTM-13 for Jason satellites, HY-2A , and MSIS-00 for other satellites
Geopotential	EIGEN-GRGS.RL03-v2.MEAN-FIELD	EIGEN-GRGS.RL04-v1.MEAN-FIELD
	C21/S21 modeled according to IERS 2010 conventions	C21/S21 non modified
	Ocean tides: FES2012	Ocean tides: FES2014
	Atmospheric gravity: 6hr NCEP pressure fields (72x72) + tides from Biancale-Bode model	Atmospheric gravity: 3hr dealiasing products from GFZ AOD1B RL06
Geocenter	Seasonal non-tidal geocenter motion from J. Ries model for DORIS/SLR stations	Full non-tidal geocenter motion derived from DORIS data and the OSTM/Jason-2 satellite, for DORIS/SLR stations and GPS satellites

	POE-E	POE-F
Loading	Ocean loading: FES2012 Pole tide: solid earth pole tides and ocean pole tides (Desai, 2002) Mean pole cubic+linear (IERS 2010)	Ocean loading: FES2014 Pole tide: solid earth pole tides and ocean pole tides (Desai, 2002) New linear mean pole model
GPS constellation	JPL solution in "native" format (orbits and clocks), referenced to the CoM of the solid Earth/Ocean – fully consistent with IGS08	GRG solution with fixed ambiguity for JASON- 3 SENTINEL-3A SENTINEL-3B – fully consistent with IGS14
Propagation delay	Tropospheric model GPT GMF	Tropospheric model GPT2 VMF1

	POE-E	POE-F
Others	DORIS station coordinates in DPOD 2008 SLR coordinates stations in SLRF2008	DORIS station coordinates in DPOD 2014 SLR station coordinates in SLRF2014 Low elevation DORIS measurement (>5°) with weighting function and tropospheric gradients

6) © cnes

JASON-2, POE-E standards, RMS SLR

SLR CORE NETWORK L7090 L7105 L7810 L7840 L7941

Stable time series for these RMS SLR, with mean RMS 8mm

JASON-3, **RMS SLR**

JASON-3, CROSSOVER VARIANCE, POE-E vs POE-F

8 © cnes

9) © cnes

JASON-3, GEOGRAPHICALLY CORRELATED RADIAL DIFF.

Difference between POE-E and POE-F DORIS+GPS reduced dynamic orbits, patchs north/south and west/east : combination of gravity field correction (sectorial terms) and geocenter motion ?

SENTINEL-3A/3B, RMS SLR CORE NETWORK

11 © cnes

JPL & GSFC COMPARISONS, RMS SLR

HIGH ELEVATION + CORE NETWORK	DIFFERENCE RMS
POE-F – GSFC	-0.08 MM
POE-F – JPL	0.8 MM

JPL & GSFC COMPARISONS, CROSSOVER VARIANCE

CROSSOVER VARIANCE DIFFERENCE	MEDIAN
POE-F – GSFC	-50 MM²
POE-F – JPL	8 MM²

12 © cnes

OSTST 2018, Precise Orbit Determination Splinter, POD Status

13) © cnes

JPL COMPARISONS, GEO. CORR. RADIAL DIFF.

PATCH NORTH / SOUTH : IMPACT OF MODELING GEOCENTER MOTION ?

PLANNED SWITCHS FROM POE-E TO POE-F

POE-F standard used in operational context : at the end of the tandem phase for SENTINEL-3A/B (first POE-F delivered in November this year) from cycle 95 for JASON-3 (first POE-F delivered in October this year)

Past orbits already reprocessed in POE-F for JASON-3

Reprocessing TOPEX POSEIDON, in progress JASON-2, beginning of 2019

15) © cnes

CONCLUSION

POE-F standards show good improvements for JASON-3 and SENTINEL-3A/B

POE-F standards show improvements too for the TOPEX/Poseidon orbits, c.f. C. Masson's presentation

CNES POE-F JASON-3 and JPL orbits are very close

Operational switch from POE-E to POE-F for Sentinel-3A/B and JASON-3 is coming soon

... THANK YOU FOR YOUR ATTENTION , ANY QUESTIONS ? ...