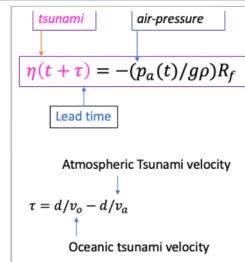


Satellite altimetry reveals genesis of volcanic tsunami

Y. Tony Song, Philip Callahan, Jean-Damien Desjonquieres, Severine Fournier & Josh Willis

Jet Propulsion Laboratory

Introduction:

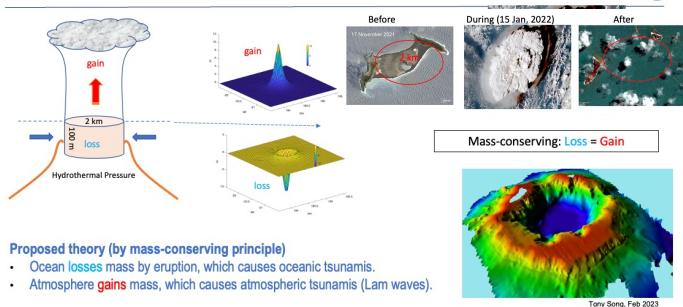

The 2022 Tonga volcanic eruption generated a surprisingly large air-pressure wave (lamb wave) and a locally damaging tsunami. The tsunami generation is still puzzling because both the air wave and submarine explosion drove changes in sea level.

Science Questions:

- How could the volcano generate the tsunami with very little water above?
- Why volcanic tsunami was so destructive near-field, but not far-field?
- How to predict/forecast volcanic tsunamis for early warning?

Methodology:

- Satellite altimetry and a coupled atmosphere-ocean model were used to analyze the air-pressure waves and the volcanic tsunami.
- We proposed a mass-conserving tsunamigenic mechanism, which couples the volcanic ejecta to ocean waters filling in the erupted crater, to explain the tsunami and observations.



Application for Tsunami Early Warning:

- How to predict/forecast volcanic tsunamis for early warning?

A mathematical formulation between air-pressure sensors and tide-gauges is established to predict volcanic tsunamis for early warning.

Mass-Conserving Volcanic Tsunami Genesis Theory

Proposed theory (by mass-conserving principle)

- Ocean losses mass by eruption, which causes oceanic tsunamis.
- Atmosphere gains mass, which causes atmospheric tsunamis (Lam waves).

Figure 1. Schematics of volcanic ejecta of waters, gases and magma to the atmosphere.

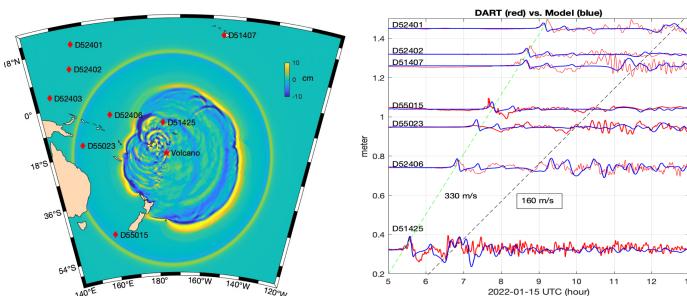
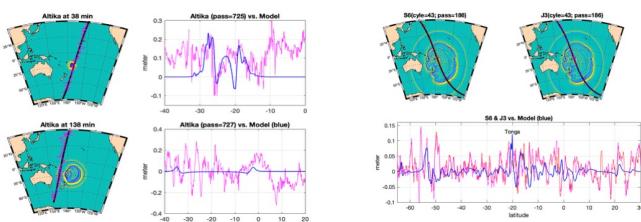



Figure 2. (left) A snapshot of the modeled atmospheric tsunami (outer circle) and oceanic tsunami (inner circle); (right) comparison with DART measurements of ocean bottom pressure, which was converted to the thickness of water. Their locations are marked on the map. The dashed-green line represents the lamb wave speed of 330 m/s.

Validation by Satellite Altimetry

Model vs. AltiKa & Jason-3 & SA6 data: Magenta is the altimetry data and blue is the model.

Figure 3. Selected altimetry measurements of the 2022 Tonga volcanic tsunami.

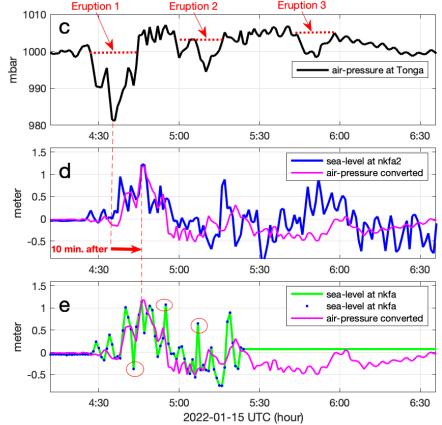


Figure 4. Air-pressure and tide-gauge in Tonga showing the predictive skills.

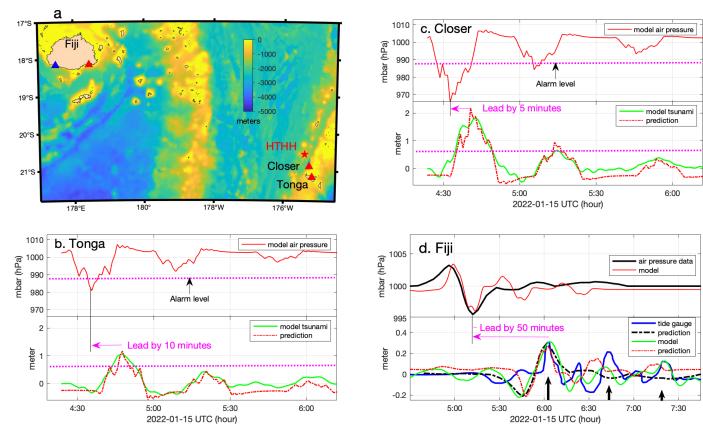


Figure 5. Air-pressure waves predict following tsunamis. Within the near-field perimeter of 60 km, a lead-time of approximately 5 to 10 minutes exists, providing a crucial window for evacuations.

Summary:

- We used satellite altimetry and a coupled ocean-atmosphere model to explain the air-pressure waves and volcanic tsunami, revealing their coupling mechanism.
- The coupling mechanism provides a way to predict/forecast volcanic tsunamis by air-pressure waves, which leads the tsunamis by 5~10 minutes within near-field of 60 km perimeter.

Publication

Song, Y. T., P. S. Callahan, J. D. Desjonquieres, S. Fournier, and J. K. Willis (2024) A coupled atmosphere-ocean source mechanism was a predictor of the 2022 Tonga volcanic tsunami, *Communications Earth & Environment*, <https://doi.org/10.1038/s43247-024-01694-z>.