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Current measurements from ADCP
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e Gravity and buoyancy forces
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* Internal waves span kilometers to meters; periods R “ A
from minutes to days (inertial frequency, f). =

* Not geostrophic, but fully divergent motions
affected by rotation.

* Large signal in temperature/density data and in
currents

e Can be seen from space
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ADCP observations vs model
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Internal waves dominate at submesoscales in the tropics
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Southeast Tropical Pacific

(SETP):

e KE wavenumber
spectra from S-ADCP

e frequency spectra from
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* STRATUS mooring

e SSH spectra from
altimetry
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KE spectral density [ m? s=2/ cpkm]
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divergent KE at 29 m
divergent KE at 240 m
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rotational KE at 29 m
= rotational KE at 240 m

=
o
i

rotational |

=
o
N

=
o
&

[wdd /,_s ,w ] Ajisusp |esydads Iy

10-2
Along-track wavemumber k [cpkm]

Many depths are plotted, 30 m and 240 m are highlighted
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The ratio of rotational to
divergent energy is
proportional to an inverse

frequency w of the wave field

We seek to understand if the
larger rotational energy is
from a wave field with
different dominant
frequencies or increased
“balanced” submesoscale
activity
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Usually given by . f :
Garrett-Munk (GM) 7GM(k) =

3 wave components: NI, IT, GM continuum.

Key assumptions for NI & IT:

- represented as delta peaks

- estimated as GM fractions (alpha) using STRATUS
-no dependence on wavenumber k
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Combine moorings (frequency)
with SADCP (wavenumber)
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Along-track wavelength [km]
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Near-surface high ratios mostly
from enhanced vortex flows



Wave-Vortex Decomposition

(b) — vortex KE 30 m
— wave KE 30 m
— vortex KE 240 m
— wave KE 240 m
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The new wave-vortex decompositions shows:

The GM is an accurate way to get the total wave KE in the southeast tropical Pacific

2-3 times more energy in the wave component than GM spectrum




SSH PSD [cm?/cpkm]
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- We can use the GM
spectrum to empirically
estimate the SSH
signature of background
waves from ADCP data.

SSH (k) = € (k) KE (k)

* We combine
« vortex S5H inferred
from geostrophy
« model (Zaron, 2019)
that captures the
stationary internal tide
which we don‘t resolve.
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spectral density (cm? cpkm™1)

Agreement with estimate based
on moored buoyancy analysis
by Callies and Wu (2019)
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At the meso to submesoscale range...

* |n the tropics:

There are mostly internal waves. |In situ current measurements indicate that
near-inertial waves are important at small scales, but...

We made a reconstruction of the oceanic SSH using in situ currents and when
we compare with altimetry the non-stationary internal tides arises as the
largest signal, overwhelming the continuum.

The method outlined here can be applied to other regions where there are
) sufficient ADCP transects, ii) data to constrain the frequency spectrum, and

lii) a suitable internal wave model (e.g. GM) can be identified. Caveat: there are
other important limitations and assumptions too.

It may be possible to use SWOT to study the internal wave continuum in the
southeast tropical Pacific.

Thank you!



