

From low resolution gridded altimetry maps to fine scales in KaRIn images

Clement Ubelmann (Datlas), Gerald Dibarboure (CNES) Antoine Delepoulle, Anaelle Treboutte, Yannice Faugere (CLS)

OSTST Meeting, PUERTO RICO, Nov. 7 to Nov. 11, 2023

Intro : from standard Altimetry to highly resolved 2D images, in a nutshell

- Nadir altimetry is limited to ~70km wavelength in 1D local profiles, and ~150km in the reconstructed 2D images

SWOT : ~15km wavelength direct 2D images : a breakthrough

Goals of this presentation :

- Show that calibration can bring Karin images consistent with nadir Altimetry, from basin to mesoscales: ready to be processed for higher level applications (mapping, ... see next presentation by Yannice Faugère)
- Show promising 2D SSH (and derivatives) signatures not seen before SWOT : short-to-sub-mesoscales

DUACS Karin medium to large scale signal compared with Nadir Altimeter

- Very good consistency with nadir data at mesoscales
- Large scale bias ~50cm roll at far range, oscillating at Orbital frequency and its sub-harmonics
- Other smaller signatures (phase errors, quadratic-shapes, nadir-Karin biases...) at >2000km

 \rightarrow A calibration is needed, along with a detailed assessment of large-scale errors

Estimation of the systematic error budget with a cross-spectral analysis

Details in "A Cross-Spectral Approach to Measure the Error Budget of the SWOT Altimetry Mission over the Ocean", JAOT, 2018.

DUACS

DUACS Application to the real SWOT data

Systematic errors looks near expectations (these are upper bounds and ongoing work):

We can apply the pre-launch algorithms calibration with a good confidence

UACS Calibration schemes (L2 and experimental-multi-mission L3)

DUACS SWOT calibration : illustration

Calibration

- Roll+phase
- Baseline dilation
- Timing
- Pseudo Phase Screen

Uncalibrated SWOT L2 data

Correction signal

correction >2500km wavelength : does not affect the Ocean short scales

SSHA average (m) before and after calibration

VAR(Karin SSHA + Xcal ADT) - VAR(Nadir SSHA) (m²)

-0.2

The calibrated L2 is very consistent with SWOT's nadir

Integral of post-calibrated systematic errors : 1.96cm

Editing, denoising, and derived variables (L3 at the science-team level)

Karin calibrated : SWOT consistency with the nadir constellation (here with experimental L3):

Animation from F. Leguillou, ESA

An homogeneized dataset is ready for higher level processings of the whole nadir+SWOT constellation (mesoscale mapping, data-assimilation, ... see next presentation)

- Karin reveals short-to-sub-mesoscale eddies in motion, also many internal wave signatures, MSS signatures, ...
- SWOT Karin images can be calibrated with very good consistency w.r.t. SWOT nadir (L2) and the existing nadir constellation (experimental L3 from the cience team) :

 \rightarrow ready for high-level (mapping, data-assimilation...) applications !

BACKUP

Multi-sensor comparison

- 15km wavelength eddies coherently moving day-to-day, advected by a larger mesoscale flow
- Some additional processings (next slide) proposed to edit, denoise, ...

Also Internal waves...

Multiple wavelengths (the smallest can only be seen on 250m data)

Change of dynamics/wavelengths near the end of the animation

NB : the animation is reversed for convenience because IT waves are traveling backwards because of the aliasing of tidal frequencies

Level-2 data-driven calibration (blue items)

- Step 0 & M1a: use SWOT altimeter only (SWOT must be self-sufficient)
- Step 1: use Direct for bias (w.r.t to nadir) and Crossover for other error components. Inversions done with least squares (robustness)
- Step 2: harmonic interpolator for for repeating error patterns (orbital revolution period and sub-harmonics)
- Step 2: weighted kernel smoother for broadband residual (robustness)
- The L2 sequence does not require any complex parameter (no covariance, no spectra, etc.) for the sake of robustness and simplicity

SSHA (m)

BEFORE NOISE 0.5 REDUCTION 0.4 0.3 0.2 0.1 AFTER NOISE 0.5 REDUCTION 0.4 0.3 0.2 0.1 -0.1 longitude

latitude

Geostrophic Velocities (m/s)

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

latitude

abutitel

Relative Vorticity

longitude

15 days of SWOT Level-3 SSHA (August 2023)

Gulf-Stream Eddies (Level-3, no interpolation)

Gulf-Stream extension – Geostrophic velocities – Level-3 no interpolation