Daily monitoring of the Kuroshio over the Izu Ridge using ferry-onboard GNSS

Kaoru Ichikawa (ichikawa@riam.kyushu-u.ac.jp), J. Noda, K. Yufu, R. Sakemi (RIAM, Kyushu Univ.)

1. Introduction

- The Kuroshio, western boundary current of the North Pacific, sometime takes a significant meandering path.
- The Izu Ridge south of Japan is considered to affect the path selections.
- But we do not have frequent observations over the Izu Ridge (even with satellite altimeters) to cover rapid path changes.

Fig.1: Frequency distribution of the Kuroshio path (left; Ambe et al., 2004). Bottom topography with adjacent Jason tracks (right).

2. Methods

Fig.2: Tachibana Maru (118 m, 5700 tons) and her ship route to Hachijo island via Miyakejima and Mikurashima islands.

- When we wanted SSH measurements by GNSS (Global Navigation Satellite System) on Tachibana Maru (Tokai Kisen Co. Ltd.) that crosses the Kuroshio over the Izu Ridge twice a day.
- SSH (*Hs*) is determined by the antenna height (*Ha*) from a reference surface, with correction of the distance (h) between the antenna and the sea surface (Fig. 3).
- The distance h can be determined by GNSS Reflectometry (GNSS-R) that uses GNSS signals reflected at the sea surface which are always delayed from the direct signals (Ichikawa et al., 2019).
 - Since the GNSS-R method is too sensitive to waves, long-term smoothing is necessary. Fortunately, actual draft changes of a large vessel are expected small and slow.

Fig.3: Schematic plot of GNSS measurements (top), and GNSS antennas for Ha (left) and h (right) for 1 Hz observations.

3. Results and Discussions

3.1 Unfixed Ship Routes

- Actual ship routes are not fixed, so that variations of geoid are included
- Remove geoid to obtain dynamic height (SSDH)
 - Unfortunately, marine areas are out of coverage of the latest local geoid model provided by Geospatial Informatoin Autority (GIA) of Japan

3.2 Dependency on positioning methods

- ☼ Determination of Ha strongly depends on the positioning methods
 - Standalone single positioning include unrealistic 2-m order undurations
 - Precise Point Positioning (PPP) is less variable, but includes a large gap at Mikurashima Island, and an increasing trend toward north
 - Post processed kinematic (PPK) referring to the stationary Miyakejima station (by GIA) provides most reasonable SSDH variations

Fig.5: Ship route on 2022/06/30 (left) and estimated SSDH by various methods in RTKlib (Takasu, 2009) ver 2.4.3 (right).

Also, depends on softwares

Fig.6: Difference between RTKlib kinematic solutions and Pride PPP-AR [°N]

- PPP solution by Pride PPP-AR (Geng et al., 2019) is much closer to PPK solution in Fig. 5 than RTKlib PPP.
- Difference between PPK and PPP (Fig 6) are less than 1 m, but still there are an unexplained trend.

3.3 SSDH Samples

12-h SSDH (Fig.7) shows

- Large tidal variations within Tokyo Bay (north of 35.2°N)
- € Lower SSDH between 33.5°N and 34.2° (south of Miyakejima island)
- Strong westward and eastward flows at 34.9°N and 35°N, respectively
- In situ velocity obs (Fig.8) shows
 - Northern branch of the Kuroshio at 35°N, downstream of Oshima island

Fig.7: 12-h SSDH on 2022/06/30 estimated by PPK (right) and ship tracks (left)

Fig.8: Quck bulletin of Ocean Conditions on 2022/06/30 from Japan Coast Guard. Enlarged figure at the top left

4. Conclusions

- SSDH over the Izu Ridge can be obtained by GNSS on a ferryboat
- More cal/val are necessary for reliable estimates

References

Ambe et al. (2004) J.Oceanogr., 60, 375-382. Geng et al. (2019) GPS Solutions, 23, 91 Ichikawa et al. (2019) Sensors, 19, 998, doi:10.3390/s19050998 Takasu (2009) *FOSS4G*