

Richard Ray¹, Michael Schindelegger², Lana Opel²

1) NASA Goddard Space Flight Center 2) University of Bonn

Changing ocean stratification is changing barotropic-to-baroclinic tidal conversion: **Evidence from altimetry and 3-D modeling**

San Juan, November 2023

tratification change (N^2 trend for 1960–2018, 10^{-7} s ⁻² yr ⁻¹)													
	-2.5			0			2.5				5.0		

CONJECTURE

Increasing stratification → More energetic internal tides

- 1. Changing internal tides altimeter evidence (2 results)
- 2. Changing barotropic tides model & altimeter evidence
- **3.** Systematic errors in barotropic trends from altimetry
 - •DAC
 - Orbits, tidal geocenter motion
 - "Mesoscale correction", CoM correction, et al.

Stronger internal tides Weaker barotropic tides

OUTLINE

Baroclinic

Z. Zhao (2023), **Satellite Evidence for Strengthened M2 Internal Tides in the Past 30 Years**

M2 amplitude change (over 20 years)

Another (blurry) view: Based on strictly T/P-Jason-S6 on primary orbit

M2 internal tide amplitudes

Barotropic

Bij de Vaate, Slobbe, Verlaan, "Secular trends in global tides derived from satellite radar altimetry," *JGR Oceans*, 2022.

Change in M2 amplitude, 1993–2020.

Analyzed cross-overs: cannot distinguish barotropic from baroclinic change. Stimulated further work; Inge deserves acknowledgement for sticking her neck out first!

Modeling Approach

MITgcm – global ocean Horizontal (1/12)°, Vertical 59 layers **Tidal forcing: M2, S2, K1, O1 Includes self-attraction/loading** Annual time slices, 1993–2019 **Stratification defined by GLORYS12 reanalysis**

Independent barotropic run with sea level rise

÷

A changing barotropic tide?

Altimetry Analysis

Topex, Jason-1, -2, -3, Sentinel-6 (too coarse for shallow seas) **RADS** – with all default corrections FES2014 default tide + non-tidal Aviso SSH removal + Zaron internal tides **Binned tidal analysis, solving for:** M2, S2, K1, O1 mean corrections M2 nodal sideline correction M2, S2, K1, O1 linear trends

Resulting M2 Trends from MITgcm

M2 amplitude trend -- Altimetry M2 Barotropic Trends 1993–2019 M2 amplitude trend -- Model

Note scale bar difference!

Possible systematic errors in altimeter results

- DAC de-aliasing correction
- Orbits / Tidal geocenter models
- Others (e.g., "Mesoscale" correction)

Dynamic Atmosphere Correction (DAC) – for dealiasing Carrère et al. (2003, 2016)

Periods > 20 day: Inverted barometer

IN PRINCIPLE:

Air tides are removed from forcing to prevent radiational tides from being double-counted. (Ocean tide corrections account for full tides, gravity+radiational.)

Solar air tides not completely removed. Lunar air tides were overlooked.

Periods < 20 day: wind/pressure-driven barotropic model

IN PRACTICE:

M2 Tide Leakage into DAC

Why is there a trend???

M2 Tide Leakage in DAC

Why is there a trend?? Because of ECMWF forcing.

1980-1987

1993-2000

see Schindelegger & Dobslaw (JGR, 2016) for early 20th century: M2 vanishes!

2003-2010

2013-2020

Systematic Errors from Orbits/Geocenter

- **1. Tidally coherent errors in orbits**

Default orbits in RADS

2. Inconsistent tidal geocenter models for different missions.

Geocenter model

Topex/Poseidon	GDR-C'	??		
Jason-1	GDR-E	FES2012		
Jason-2	GDR-E	FES2012		
Jason-3	GDR-F	FES2014		
Sentinel-6A	GDR-F	FES2014		

How large are the tidally coherent errors in these orbits? **Inconsistencies between missions affect estimated tide trends!**

Tidal Analysis of Orbit Differences, Amplitudes

M2

K1

S1

S2

Sa

Approach: Form differences, RADS-GSFC orbits Compute tidal analysis over globe

Conclusions: Perhaps significant for M2 Likely disastrous for K1 Why large differences, GSFC – GDR-F ?? Why large differences, GDR-E – GDR-F ??

Implications:

Use consistent models/orbits for all missions But we cannot overcome inconsistent tracking

SUMMARY

- Open-ocean M2 changes, 1993–2019 'tentative'
 - Barotropic tide trends predominantly negative.
 - Baroclinic tide trends predominantly positive.
- Likely cause of both: changes in ocean stratification
- Problems in the altimeter DAC correction
 - 1. M2 air-tide forcing
 - 2. False trend in M2 air tide from ERA5
- Altimeter analysis for barotropic tides requires consistent orbits.
 - need to ensure consistent geocenter models
 - cannot overcome inconsistent tracking over time