Anomalous Poleward Transports in the California Current System
Ted Strub, Corinne James, Melanie Fewings, Jessica Garwood, Andrew Scherer Jennifer Fisher, Samantha Zeeman, Anna Bolm, Ricardo Matano, Vincent Combes

Motivation

Observations of "tropical/subtropical" (warm-water) species of zooplankton and water properties off Oregon have been used to infer transports from far to the south during some years, especially El Niño warm events (1982-83, 199798).

Questions:

- From how far to the south can passive water parcels arrive off Oregon (Newport) in one year? Southern California? Baja California? Central America? Equator?
- Is there systematic interannual variability in Lagrangian transports related to zooplankton distributions?
- What is the "nature" of the Lagrangian pathways taken by these passive parcels?
- What roles are played by the: ICC, Davidson Current, Offshore Eddy Field, Eastward Inflow from the west, Meso- \& Sub-Mesoscale "diffusion", Wind-driven Ekman Transports?

Methods

- Calculate daily Lagrangian trajectories using the "Parcels" software
- Absolute geostrophic velocities from SLA + CLS CNES MDT22
- "OSCAR": Ekman transports in the top 30m + Absolute geostrophic velocities
- Release 20 parcels daily along $4^{\circ} \mathrm{E}-\mathrm{W}$ transects at $32^{\circ} \mathrm{N}$ (SCB), $35^{\circ} \mathrm{N}$ (just north of the SCB) \& $44.65^{\circ} \mathrm{N}$ (Newport)
- Track forward and backward for 1 year.

Interannual Variability

 Parcel Transport Anomalies (Seasonal Cycle Removed)

 Parcel Transport Anomalies (Seasonal Cycle Removed)

 Number of Parcels Released from $35^{\circ} \mathrm{N}$ that Reach 3 Target Latitudes

 Number of Parcels Released from $35^{\circ} \mathrm{N}$ that Reach 3 Target Latitudes
 All-Sat and 2-Sat

Parcel Transport Anomalies vs Zooplankton Anomalies (Newport, OR)
3Mo Smoothed Anomalies of NHL Species Richness

3Mo Smoothed Anomalies of Southern Copepod Biomass

3Mo Smoothed Anomalies of AV22 + Diff $35^{\circ} \mathrm{N} / @$ Time @Target Latitude
 3Mo Smoothed Anomalies of TS22 + Diff $35^{\circ} \mathrm{N} /$ @Time @Target Latitude

Correlations: Transport Anomalies with Zooplankton Anomalies

All-Sat

2-Sat

Density of Parcels in 0.5° Cells, Released at $35^{\circ} \mathrm{N}, 30-365$ Days Earlier

 Warm vs Other Years (Geostrophic + Diffusion)

Figure 21. Seasonal monthly mean density of parcels in 0.5 degree squares. Colors represent the percent of the possible number of parcels that could be in a square, if all of the parcels released during the previous 365 days were gathered into that one square. The 8 "warm years" include 1997-98, 2002-$03,2004-05,2005-06,2009-10,2014-15,2015-16,2016-1$. The "other years" include the remaining 15 years during $1997-2020$.

PEPs

Principle Estimator Patterns 10 EOFs of the forcing fields (alongshore wind stress) and the response (the parcel density fields) are combined to produce single patterns of the forcing field and response perfectly correlated with one time series (like a joint EOF).

The densities of the parcels released at $35^{\circ} \mathrm{N}$ are increased in the region north of $\sim 38^{\circ} \mathrm{N}$ by the poleward wind stress in the northern part of the CCS. The time series is strongest during the same "warm years" that saw greater species richness \& biomass of warm zooplankton species in the north.

3Mo Smoothed Anomalies of NHL Species Richness

Questions and Answers:

- From how far to the south can passive water parcels arrive off Oregon (Newport)? Southern California? Baja California? Central America? Equator?
- In one year, from the Southern California Bight ($30^{\circ} \mathrm{N}$)
- In multiple years, from $\mathbf{~ 2 ~}^{\circ} 6^{\circ}-\mathbf{2 7}{ }^{\circ} \mathrm{N}$ and from the west.
- Is there systematic interannual variability in Lagrangian transports related to zooplankton distributions?
- Yes: Years with greater numbers of parcels that reach $43^{\circ} \mathrm{N}$ and $45^{\circ} \mathrm{N}$ are correlated with the appearance of southern "warm water" species and greater "species richness" off Oregon.
- These are often EI Niño warm events or Marine Heat Wave years
- The increased densities of southern water parcels in the north is associated with increased poleward wind stress in the northern half of the CCS, i.e., signals arriving through the "atmospheric pathway".
- What about the "oceanic pathway"? Stay tuned.
- What is the "nature" of the Lagrangian pathways taken by these passive parcels?
- They travel in the semi-permanent poleward ICC in the south during summer and autumn and in the poleward Davidson Current in the autumn and winter (November-February).
- They are more successful in reaching higher latitudes when horizontal "eddy-diffusion" is included to approximate the action of mesoscale and sub-mesoscale motions.

