What forcing mechanisms affect interannual sea level co-variability between the Northeast and Southeast Coasts of the United States?

Ou Wang¹, Tong Lee¹, Thomas Frederikse², Rui Ponte³, Ian Fenty¹, Ichiro Fukumori¹, & Ben Hamlington¹

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, U.S.A.
²University of California, Los Angeles, California, U.S.A.
³Atmospheric and Environmental Research Inc., Lexington, Massachusetts, U.S.A.

Question? Tony Lee, tlee@jpl.nasa.gov

© 2024. All rights reserved.
Motivation

• Sea level anomalies (SLA) in the northeast (NE) and southeast (SE) U.S. coasts co-vary within each sector, but not between the two sectors.

• The forcing mechanisms causing this behavior are not well understood.

• Here we use ECCO ocean state estimation and adjoint sensitivity analysis to investigate the causes, focusing on interannual time scales.

• Improving this understanding is important for sea level prediction and evaluation of climate models.
Estimating the Circulation & Climate of the Ocean (ECCO) ocean state estimates: synthesis of global ocean data with MITgcm using an adjoint-based inverse estimation method, with the adjoint model providing sensitivities of ocean state to forcings

https://ecco.jpl.nasa.gov

Courtesy of the ECCO team
SLA in the NE & SE U.S. coasts are well correlated within NE or SE, but not between NE & SE.

Correlation coefficients of AVISO SLA at Charleston (a) and Nantucket (b) with SLA elsewhere. Correlation coefficients of ECCO SLA at Charleston (d) and Nantucket (c) with SLA elsewhere.

(A 13-month low-pass filter applied to the monthly mean SLAs after removing the global mean and the mean seasonal cycle)
Method
(for details: Wang, Lee, & Piecuch et al. 2022, Ferderikse; Lee, & Wang et al. 2022; Wang, Lee, & Frederikse et al. 2023)

- Compute sensitivities of Nantucket & Charleston SLA to atmospheric forcing (zonal & meridional wind stress, air-sea heat and freshwater fluxes) using ECCO adjoint model, as a function of forcing type, location, and forcing lead time (up to over 2 decades).

- Reconstruct ECCO estimation of Nantucket & Charleston SLA by “convolving” the SL sensitivity to atmospheric forcings with ECCO atmospheric forcing anomalies (success rate ~90%).

\[
J(t) \approx \sum_i \sum_s \sum_{\Delta t} \frac{\partial j}{\partial F_i(s, \Delta t)} \delta F_i(s, t - \Delta t),
\]

where \(\frac{\partial j}{\partial F_i(s, \Delta t)}\) is the adjoint sensitivity of SLA to forcing \(F_i\) at lead time \(\Delta t\) and location \(s\); and \(\delta F_i(s, t - \Delta t)\) is forcing \(F_i\) at some prior time \(t - \Delta t\) (i.e., target time, \(t\), minus lead time, \(\Delta t\)).

- Assess the relative contributions of wind stress & buoyancy forcing.

- Contrast regional atmospheric forcing contributions (e.g., using the so-called “Forcing Influence Maps”).

- Quantify what regional forcings improve or degrade the co-variability of Nantucket & Charleston SLA.
Panels (c) and (d) show decomposition of the total reconstruction of SLA into wind and buoyancy forcing contributions for (c) Charleston and (d) Nantucket. The two numbers in the legend are standard deviation (cm) and explained variance of the total reconstruction by each contribution.

Highlight of results: 1

Wind stress explain ~70% of the interannual SL variance both for Charleston and Nantucket.
Highlight of results: 2

- Wind stress tends to make Nantucket & Charleston interannual SLA less correlated.
- Buoyancy forcing tends to make Nantucket & Charleston interannual SLA more correlated.

Comparison of SLAs (cm) between Charleston and Nantucket reconstructed using (a) all forcings, (b) wind stress, and (c) buoyancy forcing.

(The r numbers are the correlation coefficients for each pair; * indicates insignificant correlation coefficient at the 95% confidence level)
Highlight of results: 3

Examples of adjoint sensitivity maps

Sensitivity of **Nantucket** SL to zonal wind stress from 3 months before

Sensitivity of **Charleston** SL to zonal wind stress from 3 months before
Key results

- Onshore winds north of Cape Hatteras & buoyancy forcing both cause Nantucket & Charleston SLA to co-vary.
- Offshore winds contribute much more to interannual SLA at Charleston than to that at Nantucket.
- Offshore winds are the major factor causing incoherent interannual SLA between Nantucket and Charleston.
 - Open-ocean wind stress curl forces Rossby waves propagating slowly towards Charleston, in contrast to onshore winds that force coastal waves propagating down the coast rapidly.
 - Important info for ML-based SLA prediction.

Forcing influence maps for Charleston SLAs due to a) wind stress and b) buoyancy forcing. Panels c) and d) are the same as a) and b) but for Nantucket. The values represent fractions per unit area (km$^{-2}$) of variance of total reconstructed interannual SLA variations at Charleston or Nantucket explained by reconstructed SLA using forcing at each location.
Backup slides
Fidelity of ECCO state estimates: comparison of global mean SL & ocean bottom pressure (OBP) between ECCOv4r4 and satellite data (assimilated)

Dear [Name],

I hope this email finds you well. I am writing to you regarding the fidelity of ECCO state estimates. Specifically, I am interested in comparing the global mean sea level (SL) and ocean bottom pressure (OBP) between ECCOv4r4 and satellite data (assimilated).

The ECCO team has conducted a detailed analysis of these comparisons, and the results are quite promising. The graph attached illustrates the trend over time, showing a close match between the simulated data and the assimilated satellite data. The red line represents the sea level data, while the blue line shows the simulated sea level (V4r4). The pink and green lines represent the OBP data and simulated OBP (V4r4), respectively.

As you can see, there is a good alignment between the data and simulations, which indicates the accuracy of the model. I believe this information will be beneficial for our ongoing research and could be included in our next report.

Thank you for your attention, and please let me know if you have any questions or need further assistance.

Best regards,

[Your Name]
Fidelity of ECCO state estimates:
comparison of regional SL between ECCOv4r4 & tide gauge (TG) data (independent)

Correlation of monthly SLA between ECCOv4r4 and TG data around the North American coasts.

SLA time series off New York City and San Francisco (Blue-ECCO, Black: TG).

Because VLM affects long-term trends of tide gauge data, the linear trends during the 1992-2017 period were removed from all time series. Atmospheric pressure effects were included in all time series.

Courtesy of Chris Piecuch
SLA comparison: tide gauge, Altimetry/AVISO, ECCO estimate, and adjoint-based reconstruction.

Relative contribution of wind stress and buoyancy forcing to SLA reconstruction (13-month low-pass).

SLA (cm) from tide gauge (gray), AVISO (black), ECCO (blue), and total reconstruction (orange) from all contributions for (a) Charleston and (b) Nantucket. Panels (c) and (d) show decomposition of the total reconstruction into various contributions for (c) Charleston and (d) Nantucket. The two numbers in the legend are standard deviation (cm) and explained variance of the total reconstruction by each contribution.