Patterns of sea-level change in the altimeter record as compared to CMIP6 historical simulations

Sloan Coats University of Hawai'i Ocean Surface Topography Science Team Meeting November 10, 2023

and

Phil Thompson (UH), Chris Piecuch (WHOI), Ben Hamlington (JPL)

Jet Propulsion Laboratory

Has the forced pattern of sea level change in the altimeter record has emerged from internal variability?

Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future

John T. Fasullo ᅝ 🎦 and R. Steven Nerem ᅝ Authors Info & Affiliations

Edited by Anny Cazenave, Centre National d'Etudes Spatiales, Toulouse, France, and approved November 5, 2018 (received for review July 31, 2018)

December 3, 2018 115 (51) 12944-12949 https://doi.org/10.1073/pnas.1813233115

Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future

John T. Fasullo ᅝ 🎦 and R. Steven Nerem ᅝ Authors Info & Affiliations

Edited by Anny Cazenave, Centre National d'Etudes Spatiales, Toulouse, France, and approved November 5, 2018 (received for review July 31, 2018)

December 3, 2018 115 (51) 12944-12949 https://doi.org/10.1073/pnas.1813233115

Has the forced pattern of sea level change in the altimeter record has emerged from internal variability?

Model Name ACCESS-CM2 ACCESS-ESM1-5 CAMS-CSM1-0 CESM2-FV2 CESM2-WACCM CESM2-WACCM-FV2 CIESM CMCC-CM2-HR4 CMCC-CM2-SR5 CMCC-ESM2 CNRM-CM6-1-HR CanESM5-CanOE EC-Earth3 EC-Earth3-AerChem EC-Earth3-CC EC-Earth3-Veg EC-Earth3-Veg-LR FIO-ESM-2-0 GFDL-CM4 HadGEM3-GC31-LL HadGEM3-GC31-MM MIROC-ES2L MPI-ESM-1-2-HAM MPI-ESM1-2-HR MPI-ESM1-2-LR MRI-ESM2-0 NESM3 NorCPM1 NorESM2-LM SAM0-UNICON TaiESM1 UKESM1-0-LL Total: 32

Model Name	# Ens. Members	
ACCESS-CM2	3	
ACCESS-ESM1-5	19	
CAMS-CSM1-0	3	
CESM2-FV2	3	
CESM2-WACCM	3	
CESM2-WACCM-FV2	3	
CIESM	3	
CMCC-CM2-HR4	1	
CMCC-CM2-SR5	1	
CMCC-ESM2	1	
CNRM-CM6-1-HR	1	
CanESM5-CanOE	3	
EC-Earth3	22	
EC-Earth3-AerChem	2	
EC-Earth3-CC	1	
EC-Earth3-Veg	6	
EC-Earth3-Veg-LR	3	
FIO-ESM-2-0	3	
GFDL-CM4	1	
HadGEM3-GC31-LL	4	
HadGEM3-GC31-MM	4	
MIROC-ES2L	10	
MPI-ESM-1-2-HAM	3	
MPI-ESM1-2-HR	10	
MPI-ESM1-2-LR	10	
MRI-ESM2-0	5	
NESM3	5	
NorCPM1	13	
NorESM2-LM	3	
SAM0-UNICON	1	
TaiESM1	1	
UKESM1-0-LL	17	
Total: 32	Total: 168	

Model Name	# Ens. Members	Preind. Control
ACCESS-CM2	3	500 yrs
ACCESS-ESM1-5	19	900 yrs
CAMS-CSM1-0	3	500 yrs
CESM2-FV2	3	500 yrs
CESM2-WACCM	3	499 yrs
CESM2-WACCM-FV2	3	500 yrs
CIESM	3	500 yrs
CMCC-CM2-HR4	1	
CMCC-CM2-SR5	1	500 yrs
CMCC-ESM2	1	
CNRM-CM6-1-HR	1	300 yrs
CanESM5-CanOE	3	501 yrs
EC-Earth3	22	
EC-Earth3-AerChem	2	
EC-Earth3-CC	1	
EC-Earth3-Veg	6	
EC-Earth3-Veg-LR	3	501 yrs
FIO-ESM-2-0	3	575 yrs
GFDL-CM4	1	500 yrs
HadGEM3-GC31-LL	4	500 yrs
HadGEM3-GC31-MM	4	500 yrs
MIROC-ES2L	10	500 yrs
MPI-ESM-1-2-HAM	3	
MPI-ESM1-2-HR	10	500 yrs
MPI-ESM1-2-LR	10	1000 yrs
MRI-ESM2-0	5	701 yrs
NESM3	5	500 yrs
NorCPM1	13	500 yrs
NorESM2-LM	3	
SAM0-UNICON	1	700 yrs
TaiESM1	1	
UKESM1-0-LL	17	1880 yrs
Total: 32	Total: 168	Tot: 23, Avg: 615 yrs

Model Name	# Ens. Members	Preind. Control	~Grid Spacing
ACCESS-CM2	3	500 yrs	300 x 360
ACCESS-ESM1-5	19	900 yrs	300 x 360
CAMS-CSM1-0	3	500 yrs	200 x 360
CESM2-FV2	3	500 yrs	384 x 320
CESM2-WACCM	3	499 yrs	384 x 320
CESM2-WACCM-FV2	3	500 yrs	384 x 320
CIESM	3	500 yrs	384 x 320
CMCC-CM2-HR4	1		1051 x 1442
CMCC-CM2-SR5	1	500 yrs	292 x 362
CMCC-ESM2	1		292 x 362
CNRM-CM6-1-HR	1	300 yrs	1050 x 1442
CanESM5-CanOE	3	501 yrs	291 x 360
EC-Earth3	22		292 x 362
EC-Earth3-AerChem	2		292 x 362
EC-Earth3-CC	1		292 x 362
EC-Earth3-Veg	6		292 x 362
EC-Earth3-Veg-LR	3	501 yrs	292 x 362
FIO-ESM-2-0	3	575 yrs	384 x 320
GFDL-CM4	1	500 yrs	1080 x 1440
HadGEM3-GC31-LL	4	500 yrs	330 x 360
HadGEM3-GC31-MM	4	500 yrs	1205 x 1440
MIROC-ES2L	10	500 yrs	256 x 360
MPI-ESM-1-2-HAM	3		220 x 256
MPI-ESM1-2-HR	10	500 yrs	404 x 802
MPI-ESM1-2-LR	10	1000 yrs	220 x 256
MRI-ESM2-0	5	701 yrs	363 x 360
NESM3	5	500 yrs	292 x 362
NorCPM1	13	500 yrs	384 x 320
NorESM2-LM	3		385 x 360
SAM0-UNICON	1	700 yrs	384 x 320
TaiESM1	1		384 x 320
UKESM1-0-LL	17	1880 yrs	330 x 360
Total: 32	Total: 168	Tot: 23, Avg: 615 yrs	Average: 416 x 489

Workflow:

- -Regrid to an even 1 by 1 grid
- -Take yearly average (as per Fasullo and Nerem)
- -Clip to 1993-2014 (overlapping period with altimeter record)
- -Calculate linear trend (cm/dec. or m) at each grid point to produce a trend pattern
- -Remove global trend (as per Fasullo and Nerem)

Workflow:

-Compute trajectory of modes from 1993-2014 (ENSO, AMO, PDO, NAM, SAM, etc.)

Workflow:

-Compute trajectory of modes from 1993-2014 (ENSO, AMO, PDO, NAM, SAM, etc.)

-Compare to trajectory of modes in simulations to observations using linear correlation

Workflow:

-Compute trajectory of modes from 1993-2014 (ENSO, AMO, PDO, NAM, SAM, etc.)

-Compare to trajectory of modes in simulations to observations using linear correlation

-Can trajectory of modes explain sea level trend spatial patterns?

Stepwise linear regression

Correlation coefficient for modes of variability as independent variables

CPCS values for sea level trend pattern as dependent variable

In what regions are sea level trends emerging?

Workflow:

-Regrid to an even 1 by 1 grid

-Take yearly average

-Clip to 1993-2014 (overlapping period with altimeter record)

-Calculate linear trend (mm/dec. or cm) at each grid point to produce a trend pattern

-Remove global trend (as per Fasullo and Nerem)

-Same workflow above applied to 22 year (length of altimeter record) sliding time periods (slide every ten years) across the preindustrial control simulations

In what regions are sea level trends emerging?

Has the forced pattern of sea level change in the altimeter record has emerged from internal variability?

When will the forced pattern of sea level change emerge from internal variability?