Earth radiation models and Earth's climate energy imbalance

Maya Nocet-Binois

In collaboration with Alexandre Couhert, Flavien Mercier & Pascal Gegout

OSTST meeting: November 7 – November 11 2023

1

Earth radiation models and Earth's climate energy imbalance

Maya Nocet-Binois

In collaboration with Alexandre Couhert, Flavien Mercier & Pascal Gegout

OSTST meeting: November 7 – November 11 2023

Altimetry a) Earth radiation pressure modeling b) Impact of the new model on altimetry

II. Earth's Radiative Budget

Earth's Radiative Budge

Orbital determination for altimetry

Objective: Achieve an orbital radial error of less than 0.1 mm/year over 10 years at the regional scale. [1] Meyssignac et al. 2023

CNES: ZOOM software

Precise Orbite Determination

Impact of the new model on orbitograph 00000000 Earth's Radiative Budget

onclusion

Albedo and emissivity

Impact of the new model on orbitograph 00000000 Earth's Radiative Budget

Conclusion O O Conclusion

Albedo and emissivity

[2] KNOCKE et al. 1988

Impact of the new model on orbitograph 00000000 Earth's Radiative Budget

Albedo and emissivity

Altitude altimetric satellite

Earth's Radiative Budget

Conclusion O O CENTRE NATION

Temporal and spatial complexity of the two sources of Earth radiation

ERA5 (reanalysis)- hourly data January 01, 2023

Thermal radiation (Longwave)

Albedo (Shortwave)

© Pascal Gegout

Earth's Radiative Budget

Evolution of the Earth Pressure radiation modeling

Earth's Radiative Budget

Conclusion O O CONCENTRE NATI

Evolution of the Earth Pressure radiation modeling

mpact of the new model on orbitography 0 0 0 0 0 0 Earth's Radiative Budget

Zoom implementation and cross-validation with external tool

External software developed

- $\vec{a} = f_r C_r \frac{A}{m} P_{tot} \vec{u}_r$
- $dP_{tot} = (F_{SW} + F_{LW}) \frac{\cos(\alpha)}{c r_{sat}^2 \pi} dA$

ZOOM implementation

Earth's Radiative Budget

Zoom implementation and cross-validation with external tool

External software developed

- $\vec{a} = f_r C_r \frac{A}{m} P_{tot} \vec{u}_r$
- $dP_{tot} = (F_{SW} + F_{LW}) \frac{\cos(\alpha)}{c r_{sat}^2 \pi} dA$

ZOOM implementation

Con	text			Earth	radi	atior	ו pre	essur	e mo	delir	ng
0	0	0	0	0	0		0	0	0		

npact of the new model on orbitograpl 00000000 Earth's Radiative Budget

Models shift in ZOOM

Earth's Radiative Budget

Results : models comparison

Earth's Radiative Budget

nclusion

External validation: with the University of Bonn

Personnal communication : Kristin Vielberg & Jürgen Kusche

Earth's Radiative Budget

onclusion O O · · · · COES CENTRE NATIONAL

External validation: with the University of Bonn

Personnal communication : Kristin Vielberg & Jürgen Kusche

Con	text			Earth	radi	atior	i pre	ssur	e mo	deling
0	0	0	0	0	0	0	0	0	0	

Altimetry satellites

	CryoSat-2	Sentinel-6A
Operational Period	April 8, 2010 - today	November 21, 2020 - today
Inclinaison	92°	66°
Altitude	717 km	1336 km
Surface/masse	$0.012 \ m^2/kg$	$0.018 \ m^2/kg$
Draconitic period	16 months	4 months

Con	text			Earth	radi	ation	pre	ssure	modeling
0	0	0	0	0	0	0	0	0	0

Orbit determination

Least-square optimisation

Context		Earth	radi	iatior	n pre	essur	e modeling	Impac	t of	the n	iew	mod	el on orbitography	Earth's Radiative Budget C	0
0 0 0	0	0	0	0	0	0	0	0	0	0	\bullet	0	0	0 0 0	

CryoSat-2

Cor	Context		Earth	radi	atior	n pre	ssur	e modeling	Impact of the new model on orbitography						
0	0	0	0	0	0	0	0	0	0	0	0	0		0	0

Earth's Radiative Budget

CryoSat-2

20

Cor	ntext			Earth	radi	iatior	n pre	essur	e modeling	Impa	ct of	the r	new	mod	el on orbitograp	bhy
0	0	0	0	0	0	0	0	0	0	0	0	0	\bullet	0	0	

Earth's Radiative Budget

CryoSat-2

Context	Earth radiation pressure modeling	Impact of the new model on orbitography	Earth's Radiative Budget	Conclusion
0 0 0 0	0 0 0 0 0	\circ \circ \circ \circ \bullet \circ	0 0 0	0 0

Empirical forces Sentinel-6A

CENTRE NATIONAL

Does our model augmentation meet the goal ? (0,1 mm/year over ten years regionally)

Context	Earth radiation pressure modeling	Impact of the new model on orbitography	Earth's Radiative Budget	Conclusion
0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	• • •	0 0

Earth Energy Imbalance

Context	Earth radiation pressure modeling	Impact of the new model on orbitography	Earth's Radiative Budget	Conclusion
0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	• • •	0 0

Earth Energy Imbalance

Earth's Radiative Budget

Ajisai : Experimental Geodetic Satellite (EGS)

Operational Period : August 1986 - today

Orbite

 Altitude : 1500 km
 Nearly circular
 Inclinaison : 50°

Satellite Spherical 318 miroirs Diameter 2.15 m

Grasse

31 stations

Earth's Radiative Budget ○ ○ ●

Preliminary results: annual correction of Earth fluxes

$f_{r} = \text{CFPIRA error (\%)}$

 $\vec{a} = \mathbf{f_r} \ C_r \ \frac{A}{m} \ P_{tot} \vec{u}_r$

SW flux error (W/m2)

2019

2018

Years

2020

ERA5 CERES

Con	text			Earth	radi	atior	n pre	ssur	e mo	odelin	g
0	0	0	0	0	0	0	0	0	0		

Earth's Radiative Budget

New model of the Earth's radiation pressure based on observations

 $\vec{a} = f_r C_r \frac{A}{m} P_{tot} \vec{u}_r$

Orbit determination

Improved force model on satellite altimeter

. Empirical force

. f_r is not released

Dynamic parameterisation . f_r is released

Scientific question

More accurate measurement of sea levels

Better knowledge of the outgoing flux of the Earth and therefore of the Earth's energy balance

Cont	text			Earth	radi	atior	n pro	essur	e mo	odeling	Impac	t of t	he r	new	mod	el or	n orbitography	Earth'	s Rac	diative Budget	Conclu	sion	
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	•	
																						•••	•

Conclusion

This study has accomplished the following key outcomes during my internship:

- 1. Highlighting the need for **enhanced Earth radiation pressure modeling** : The study confirm the necessity for an improved model in understanding Earth radiation pressure.
- **2. Refined model alignment with general objective** : The newly developed model aligns with the overarching goal of achieving a regional precision of 0.1 mm/year over a 10-year span.
- **3. Feasibility of laser-based flux recalibration** : The study demonstrated the feasibility of using laser technology to recalibrate flux measurements, offering promising avenues for measurement refinement.
- 4. Emphasizing the call for further research and Ph.D. proposal

D'ÉTUDES SPATIALE

Cont	ext			Earth radiation pressure modeling						Impact of the new model on orbitography						el on orbitography	Earth's Radiative Budget			Conclusion			
0	0	0	0	0	0	0	0	0	0	0	0	(C	0	0	0	C		0	0	0		

References

- KNOCKE, P., J. RIES, and B. TAPLEY (Aug. 1988). "Earth radiation pressure effects on satellites". In: astrodynamics Conference. American Institute of Aeronautics and Astronautics. doi: 10.2514/6.1988-4292.
- [2] Meyssignac, Benoit et al. (Aug. 2023). "How accurate is accurate enough for measuring sea-level rise and variability". In: Nature Climate Change 13.8, pp. 796–803. doi: 10.1038/s41558023-01735-z.
- [3] Stephens G. et al., 2023. The First 30 Years of GEWEX. Bull. Am. Meteorol. Soc., 104, E126–E157. https://doi.org/10.1175/BAMS-D-22-0061.1