

Instrumental Calibration of Copernicus Altimeters ... and a few more

Pablo García, Albert Garcia-Mondéjar

isardSAT°

OSTST 2023, San Juan, Puerto Rico

Research and services provider enterprise in the Earth Observation Field

Outline

PART I

- CAL modes & parameters, impact in the geophysical estimations
- Altimeter Instrument Behaviour of the Copernicus missions (and a few more missions if available)

PART II

 Sentinel-3 calibration orbital reconstruction from Moon Observation measurements

Outline

PART I

- CAL modes & parameters, impact in the geophysical estimations
- Altimeter Instrument Behaviour of the Copernicus missions (and a few more missions if available)

PART II

 Sentinel-3 calibration orbital reconstruction from Moon Observation measurements

Introduction

Calibration Parameters

CAL1 Products

(Internal Calibration Path Waveform)

- Internal Delay
- Integrated Power

isardSAT

- PTR Width
- Burst Power & Phase
- Attenuation Steps
- Phase Difference
- Secondary Lobes (monitoring)

CAL2 Products

 \sim

... + USO + CAL4

(Rx Transfer Function Waveform)

- CAL2 normalised shape
- Slope (monitoring)
- Standard Deviation (monitoring)

Calibration Parameters

Open Ocean Waveform

Open Ocean Waveform

Other **calibration** parameters impact in **science** data:

The **CAL2** calibration waveform compensates the whole science **waveform shape** for the Transfer Function of the altimeter Rx chain.

The **Burst Power and Phase** corrections improve the **stack alignment**.

The **ATT attenuation steps** tables corrects for the actual onboard science waveforms attenuation (sigma-0).

The USO clock period have a multiplicative impact in the final range (SSH).

Outline

PART I

- CAL modes & parameters, impact in the geophysical estimations
- Altimeter Instrument Behaviour of the Copernicus missions (and a few more missions if available)

PART II

 Sentinel-3 calibration orbital reconstruction from Moon Observation measurements

isardSAT[®]

Summary table with all values presented in the previous figure:

Calibration Parameters Drifts	Delay mm/year	Power dB/year	Width mm/year	USO mm/year
EnviSat	+ 1	- 0.15	+ 0.1	+ 3.3
CryoSat-2*	- 0.2	-0.13	- 0.00	+ 0.5
Sentinel-3A	-0.1	-0.21	- 0.28	+ 3.7
Sentinel-3B	+ 0.5	-0.24	- 0.03	+ 2.0
Sentinel-6	- 3.4	- 0.55	-0.34	-4.7

* Thanks to Aresys (Laura Fioretti) and ESA (Marco Fornari) we have been able to show CryoSat data.

Secondary Lobes Relative Power Progression

S3A CAL1 SAR Ku Sec Lobes Drifts. From 27-May-2016 to 30-Aug-2023.

Secondary Lobes Relative Power Progression

S3B CAL1 SAR Ku Sec Lobes Drifts. From 12-Jul-2018 to 09-Sep-2023.

Secondary Lobes Relative Power Progression

S6A CAL1 SAR Ku Sec Lobes Drifts. From 16-Sep-2021 to 16-Oct-2023.

isardSAT

isardSA1

S6

Outline

PART I

- CAL modes & parameters, impact in the geophysical estimations
- Altimeter Instrument Behaviour of the Copernicus missions (and a few more missions if available)

PART II

 Sentinel-3 calibration orbital reconstruction from Moon Observation measurements

S3 CAL1 Orbital Reconstruction

S3 CAL1 Orbital Reconstruction

What about **S3**?

isardSA

S3 calibration measurements are done over 5 deserts (specific latitudes).

No "around-the-orbit" measurements.

It would be interesting to know the orbital behaviour of the main CAL1 parameters.

Currently, every alternate month, a 24 minutes S3A or S3B **Moon Observation** is performed over non-fixed latitudes, rotating the platform (roll manoeuvre).

This scenario can be used for gathering CAL1 data and, after enough Moon Cal measurements, build an orbital behaviour of CAL1 measurements.

S3 CAL1 Orbital Reconstruction

isardSAT has defined and agreed with the agencies and industry (TAS) a new calibration sequence for doing the reconstruction:

This has been approved and is ready to be implemented by EUMETSAT Ops Team. During 2024, **isardSAT**^{*} will start a study for the S3 CAL1 orbital reconstruction. It will be performed within the S3MPC project, funded by ESA.

Conclusions

isardSAT

- The 3 Copernicus altimeter's instrument behaviour are nominal, with all calibration parameters compliant with mission requirements.
- The different instrumental corrections compensates the science data for the possible drifts and excursions.
- The initial S3 & S6 power drops are now much more stable.
- S6 shows stepper drifts than other missions.
- There are approaches for accounting for the whole CAL1 shape: numerical retracking, complex RIR correction (by Salvatore Dinardo et al., EUMETSAT).

• **isardSAT**[®] will develop a solution for the Sentinel-3 calibration orbital reconstruction from Moon Observation measurements, among other studies on CAL1 SAR and CAL2.

8th November 2023 | 33

Acknowledgements

- The different isardSAT assessments and studies on calibration measurements here presented have been performed under the following projects:
 - S3MPC (Sentinel-3 Mission Performance Cluster), by ESA
 - COPAS (Copernicus Altimeter Service), by EUMETSAT / EU
 - Sentinel-6 Poseidon-4 Level 1 GPP, by ESA
 - EnviSat RA2 Expert Support Laboratory , by ESA
- space aresys has helped providing CryoSat-2 calibration datasets.

ThalesAlenia has contributed with dedicated discussions.

sentinel-6

C/ Dr Trueta 113, 1st floor 08005 Barcelona

info@isardSAT.cat https://www.isardsat.cat/ + 34 93 350 55 08

Research and services provider enterprise in the Earth Observation Field

