

Fully focused SAR altimetry studies for optimal data processing and new applications on different surfaces using S6-MF

S. Amraoui^{1,2}, P. Guccione³, <u>T. Moreau</u>¹, M. Alves¹, J.A. Daguzé¹, E. Ferrer¹, L. Rodet¹, F. Boy⁴, S. LeGac⁴, C. Maraldi⁴, N. Picot⁴, O. Altiparmaki⁵, C. Donlon⁶

84.6

84.8

¹ CLS, ² BIOceanOR, ³ ARESYS, ⁴ CNES, ⁵ TU Delft, ⁶ ESA

Context and Plan

CNES R&D studies and ESA project (S6JTEX) with objectives:

- To make use of the high-resolution FF-SAR technique [Egido and Smith, 2017] to fully exploit the S6-MF capabilities with a view to implement this solution in ground segment of current and future altimeter missions
- To recommend optimal processing configurations for the Omega-Kappa (WK) algorithm [Guccione et al., 2018] in various scenarios (transponder, rough and specular surfaces)
- To develop new applications and potentially define new products for different targets (long ocean waves, coastal regions, open-water leads and inland waters) using new altimeter imagery capability

Optimal configuration for FF-SAR WK processing for diffusive (open ocean) and specular surfaces (inland waters, open-water leads) by tuning the parameters: Percentage of Doppler bandwidth, integration time, **Doppler windowing**, replica mitigation, multilooking

Parameter	No antenna	Antenna only	Hamming	Gaussian 0.4	Gaussian 0.2
Resolution [m]	0.643	0.614	0.858	0.837	1.083
PSLR [dB]	-15.42	-14.11	-32.69	-35.26	-41.70
ISLR [dB]	-13.45	-11.86	-31.56	-32.85	-41.81
Replica [dB]	-30.7	-30.8	-34.8	-35.0	-37.0

Doppler windowing reduces the side lobes and replicas level at the expense of the resolution, this effect is amplified when the windowing is sharp

Optimal configuration for FF-SAR WK processing for diffusive (open ocean) and specular surfaces (inland waters, open-water leads) by tuning the parameters: Percentage of Doppler bandwidth, integration time, Doppler windowing, replica mitigation, multilooking

Lot River, France

More details in Amraoui et al., in preparation

Optimal configuration for FF-SAR WK processing for diffusive (open ocean) and specular surfaces (inland waters, open-water leads) by tuning the parameters: Percentage of Doppler bandwidth, integration time, Doppler windowing, **replica mitigation**, multilooking

- Range-smearing effect [Ehlers et al., 2022] due to imperfect RCMC correction blurs the FFSAR grating lobes in range and azimuth (but stable in amplitude)
- Phase variation effect [Amraoui et al, in preparation] also due to RCMC mis-correction at replica positions. By making a complex summation instead of a power summation while multilooking, SL interfere destructively removing the replicas but also the incoherent signal

Optimal configuration for FF-SAR WK processing for diffusive (open ocean) and specular surfaces (inland waters, open-water leads) by tuning the parameters: Percentage of Doppler bandwidth, integration time, Doppler windowing, replica mitigation, multilooking

More details in Amraoui et al., in preparation

FF-SAR imagery for swell parameters retrieval

 2D modulation spectra from S6-MF FFSAR data allows swell parameter estimates: direction, amplitude and period [Altiparmaki et al., 2022] leading to new potential
products and applications (e.g. assimilation in ocean wave models)

 Two additional peaks due to left/right ambiguity (on top of 180° ambiguity) can be eliminated in coastal region (case study from C. Maraldi) to ease comparison with S1 spectra

Good consistency between S6-MF FFSAR data and S1 data to detect sea-ice leads

COLLECTE LOCALISATION SATELLITES

S1 lead detector can be adapted to S6-MF using the following methodology :

- To compensate the antenna gain to align the power in across-track direction
- To reduce the speckle noise by applying a Lee denoising filter to σ_0 values
- Final watershed lines are the segmentation of the filtered image into leads and floes

Ridge filter (12% leads - 88% floes) efficient for small lineic retrieval only

• 2D-view is an important source of information to know whether a sea-surface height is coming from a lead or a flow

 S6-MF imagery processing can also provide valuable information on lead/floe coverage

Watershed method (32% leads - 68% floes)

FF-SAR imagery for improved nearshore processing

Limitations of existing static files :

- Inaccurate coastlines
- Need accurate epoch estimate to position the coastline on the waveform
- Only inform on the position of land scatterers (of quite low reflectivity) and not high specularity surfaces (sandbanks, shallow waters ..)
- Static in time and space, not including natural phenomena such as tides or storms

Ø

Development of a statistical distribution method :

- \circ Antenna gain compensation, filtering, point clouds classifier (σ_0 values)
- To distinguish features of different backscattering signatures
- $\,\circ\,$ And retrack only the identified ocean targets in the waveform

FF-SAR imagery for improved nearshore processing

eesa

COLLECTE LUCAUSATIDE SATELLITES CORES

- Improve performance of parameter estimates thanks to a better robustness to specular points and mitigation of hooking effect
- To possibly estimate the dynamics of the coastal contours' changes (with marching square algorithm)
- See Ferrer et al., COA2023_002 poster

Creuse River, France

- Use of image processing technique to retrieve the nadir/off-nadir river signal among complex multiscatter scene
- See Daguzé et al. in Forums Sessions (IP: Measurement and Retracking)

Conclusions

Imagery with FF-SAR data offers new possibilities and perspectives in nadir-pointing radar altimetry, opening up avenues for new applications and products over different surfaces (open ocean, coastal, open water leads, rivers/lakes and possibly land ice)

- It requires however the altimeter to operate with a strict interleaved pulse arrangement to fully exploit the capabilities of this technique, but also needs enhanced on-ground computational resources to allow such processing
- Studies continue with CNES to actively pursue the exploitation of the FFSAR imagery paving the way for a new altimeter era

THANK YOU

