FastAdaptiveS6: an optimal retracking solution for the analysis of Sentinel-6 LRM data

<u>Anna Mangilli¹</u>, Thomas Moreau¹, Marta Alves¹, Fanny Piras¹, Pierre Thibaut¹, Claire Maraldi², François Bignalet-Cazalet², François Boy², Nicolas Picot²

¹CLS (France),² CNES (France)

Context and motivation

To ensure the continuity and the robustness of the parameter estimation, a retracking algorithm should account for:

- the **real time evolution of instrumental properties**, as the Point Target Response (**PTR**),
- a realistic waveform noise characterization

An accurate noise characterisation is particularly important for S6 as the pulseto-pulse correlations linked to the S6 PRF configuration may impact the parameter estimation if not correctly accounted for (e.g. [Egido & Smith 2018])

Current solutions implemented in the S6 ground segment do not meet this goal

FastAdaptiveS6: optimal retracker solution based on FAD [Mangilli et al OSTST22] and tailored for Sentinel-6

S6 waveform noise characterisation

ENL(<N): Effective Number of Looks: depends on the Pulse Repetition Frequency

 $ENL = ENL(k, \theta) \sim ENL(k, \text{SWH})$

The FastAdaptiveS6 retracker

• The <u>likelihood function</u> (join probability of the measurements **y** given the model $s_t(\theta)$) is a multi variate Gaussian distribution with mean s_t and noise covariance matrix C (see e.g. [Rodriguez 1998], [Halimi et al 2015]) :

$$-2ln\mathcal{L} = (\mathbf{y} - \mathbf{s}_t(\theta))^T \mathbf{C}^{-1}(\theta)(\mathbf{y} - \mathbf{s}_t(\theta)) + const$$

Waveform noise
covariance matrix $C_{k_n k}$

 $C_{k_n k_n} = \frac{s_t^2(k_n, \theta)}{\text{ENL}(\mathbf{k}_n, \theta)}$

- Maximum Likelihood Estimator equivalent to Weighted Least Squares estimator
- FADS6 Weights computation: the model dependent noise variance is included in the fit function (global fit approach)

 FADS6 main computational cost is due to the PTR convolution with a factor of 64 oversampling and not to the optimisation step (the same as for the numerical retracker)

FastAdaptiveS6: results on simulations

- Sentinel-6 simulations generated with the Adaptive model with sinc2 PTR and a multiplicative speckle noise with a gamma distribution and varying ENL(k,SWH).
- 3000 sims for different sets with SWH inputs from 1m to 10 m. A_in=1, Ep_in=0.1 (gates), γ_in=4.e-4

FastAdaptiveS6: results on simulations

Comparison of results obtained with the FastAdS6 and NUM Ordinary Least Square (same model, no weights)

FastAdaptiveS6: unbiased and optimal. Significative noise reduction for all the parameters wrt OLS. NUM OLS: epoch bias for all SWH bins up to ~1cm and SWH bias of ~6 cm for small SWH=1m

FastAdaptiveS6: results on Sentinel-6 data

Sentinel-6 20 Hz waveform data over ocean for cycle 24 (July 2021) are analysed with the **FastAdaptiveS6** retracker and the results are compared with the **NUMERICAL retracker** outputs (PDAP f08 products).

SWH FADS6

FastAdaptiveS6 results :

- Are compatible with the NUM_RTK for SWH and RANGE
- Shift in the amplitude of ~1dB wrt to the NUM_RTK (PDAP L1 total power issue?)
- Significative noise reduction of the parameters estimation wrt existing solutions

FastAdaptiveS6: fit performance

Reduced chi2: square of the residuals weighted by the data variance and normalized by the number of degree of freedom

NUM RTK PDAP and FastAdaptiveS6: Maps difference

- Overall compatible results for the estimation of SWH and RANGE
- Amplitude difference around 0.95 dB likely due to a total power computation issue in PDAP L1
- SWH dependence in the ssh difference of ~2 cm under investigation
- Different sea states seem to have a different impact on the two retrackers (different SSB needed)

Parameters correlation: EPOCH vs SWH

- Overall, similar distribution and correlation of the measurements for both retrackers
- Less dispersion for FADS6

Parameters correlation: AMPLITUDE vs GAMMA/XI2

- Almost no correlation (r=-0.14) between the amplitude and gamma parameters for the FADS6
- High correlation (r=0.96) between the amplitude and the mispointing parameters for the NUM_RTK
- Because of the different model with much lower correlations, the FADS6 allows to significantly improve the estimation of the amplitude/sigma0 wrt the NUM_RTK

Parameter errors at 1 Hz

- Significative improvement of the FADS6 estimations for all parameters wrt existing solutions
- The improvement is compatible with the improvement seen on simulations and when comparing MLE4 and Adaptive estimates on Jason-3 data

SSH and SWH spectra

- FastAdaptiveS6 spectra show significative noise reduction wrt to the NUM_RTK
- The improvement is ~60% for SWH and ~10% for SSH, in line with the Adaptive vs MLE4 comparison for Jason3
- Same spectral content at large scales
- Similar short-wavelength correlated errors

Conclusions and perspectives

- First results obtained with the FastAdaptiveS6 are promising! More extensive tests foreseen, including comparison with Jason-3 outputs (Adaptive and MLE4) during the tandem phase
- Work in progress: FADS6 configuration for sea ice and coastal waveform data
- **Perspectives**: the FastAdaptive approach could be used for current/future LRM mission (S6, SWOT-nadir, S3C/D PLRM) and adapted for SARM data

Thank you!

Waveform Peakiness and rain flag maps

