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‘) Introduction

New stability uncertainty requirements have been established for altimetry to address scientific
questions (Meyssignac et al., 2023) such as:

e closing the sea level budget and identifying the missing contributions;
e detecting and attributing the signal in sea level that is forced by greenhouse gases emissions;

e estimating the Earth’'s energy imbalance and constraining the Earth energy budget
(see presentation by Michaél Ablain on Thursday).

GMSL trend 0.3-0.5 mml/yr < 0.1 mml/yr

90 % confidence level,
GMSL acceleration 0.7-1.2 mm/yr/decade < 0.5 mm/yr/decade i.e. 1.65*standard uncertainty
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GMSL trend uncertainty over 2001-2020
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@ From water vapour to wet troposphere correction

Polynomial formula (Keihm et al., 2000; Stum et al., 2011)
WTC = (ag + a;TCWV + a;TCWV? 4+ as TCWVHTCWV

1. Compute a; coefficients and their uncertainties using ERA5 data
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Main assumptions
e therelationship is stable with time,
e the temperature has a negligible role.

temporal average = a,

- standard deviation = a,

2. Compute WTC using climate data records (CDRs) of TCWV (REMSS and HOAPS), derived from
brightness temperature measurements of SSM/I and SSMI/S satellite missions, that are highly stable
in time, as shown by the GEWEX water vapour assessment (Schréder et al., 2016).

3. Combine MWR WTC high frequencies (< 1yr) with CDR WTC low frequencies (> 1yr) to avoid

potential aliasing effects.
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B WTC instabilities

EEl Medium-frequency errors (< 1 year)
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Water vapor climate data records can be used
to improve the long-term estimates of the
altimetry record:

1. by reducing the long-term uncertainty of
the GMSL and derived climate variables
such as the Earth’s energy imbalance (see
presentation at OSTST 2022,
https://doi.org/10.24400/527896/a03-2022.3403)
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CDR-derived WTC trend uncertainty of
0.05 mm/yr (68 % confidence level)

- GMSL trend uncertainty over 2001-2020
reduced by 12 % with respect to using the
MWR-based WTC uncertainty

2. by validating the long-term stability of the
WTC from the onboard MWR.
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https://doi.org/10.24400/527896/a03-2022.3403

@ CDR-derived global mean WTC vs MWR-based WTC magellum
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@ CDR-derived global mean WTC vs MWR-based WTC magellivm
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REMSS and HOAPS derived WTC are
usually consistent, except around 2002.

REMSS and HOAPS “agree to disagree”
with the MWR-based WTC around
2009-2010 and 2017-2018.



@ Assessment over Jason-3 period magellium

Comparison between CDRs, Jason-3, SARAL/AltiKa and
Sentinel-3A MWR WTC
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@ Assessment over Jason-2 period

Comparison between CDRs, Jason-2, Envisat, SARAL/AIltiKa
and Jason-1 MWR WTC
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@ Assessment over Jason-1 period

GMWTC differences (mm)

Comparison between CDRs, Jason-1, Envisat and Jason-2
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Very good agreement
between all WTC sources
(except for the beginning
of Envisat, which is
expected).

No particular drifts
variations observed.
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@ Assessment over TOPEX/Poseidon period magellium

Comparison between CDRs, TOPEX/Poseidon MWR, Envisat,
Jason-1 and ERS-2 MWR WTC
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Conclusions

e HOAPS Vinterim and REMSS V7R2 water vapour climate data records show, in agreement with inter-mission
comparisons:

o adrift of Jason-2 MWR WTC over 2009-2010 (~2 mm in 2 years),
o adrift of Jason-3 MWR WTC over 2016-2018 (~3 mm in less than 2 years).

Recommendations

e We recommend the use of water vapour climate data records for the validation of the wet troposphere
correction of altimetry missions.

e This validation requires regularly updated climate data records of water vapour, with comprehensive
uncertainty estimates described by covariance matrices.

The CDR-derived WTC is available on the AVISO+/ODATIS portal

for independent assessment:
https://doi.org/10.24400/527896/a01-2022.018
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