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Determining Optimal Mapping Parameters 
We will determine optimal parameters for mapping Jason-class satellite altimetry.  This is 
essentially a study in mapping theory applied to a particular problem. 
The main framework is an OSSE in which a general circulation model (GOLD-NoTides, 
Simmons and Alford, 2012) is observed with realistic altimeter-like sampling.  

• Jason-class altimetry only, for simplicity 
• Realistic small-scale noise, inferred from along-track data, is added to the model.  
• Assumption of synopticity (the 9.92-day cycle mean field is observed instantaneously) 
• Maps created using local polynomial fitting  
• Isotropic (i.e. circular, non-elliptical) weighting kernel for now 
• Best choice of parameters is founding by minimizing MSE vs. model truth in a large 

parameter sweep (>40,000 maps) followed by optimizations. 



A Synthetic Along-Track Dataset 

From a GOLD-derived data product by Simmons and Lilly (2023), in prep.  



What is Local Polynomial Fitting? 
This is simply a least squares fit, at each mapping point, of a polynomial to the data, with 
a weighting function concentrating the effect of nearby data points.  

• The fit order, , determines whether we fit to a constant , a plane , or a 
parabolic surface .  Note the  case is the same as a kernel smoothing. 

• The weighting function, denoted , is called the kernel.   vanishes for . 

• The kernel is spatially rescaled by the bandwidth  to give . 

• The number of data points within the nonzero portion we will call the population . 

• Two different variants are fixed bandwidth ( =const) or fixed population ( =const). 
• The distribution of data points is called the design; as in, the design of an experiment. 
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What is Local Polynomial Fitting? 
Let  be a mapping point and  be a array of data collected at locations . 

We seek to minimize the weighted least squares error 

 

where the array  is the estimated field value and its first  derivatives,  is 
matrix of up to th order polynomials in  and , and  is a weighting matrix 

 

The solution is given by  

 

where the matrix to be inverted is  for ,  for , and  for .
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Advantages of Local Polynomial Fitting  
• Simple: just choose an order, weighting kernel, and bandwidth settings 
• Easy to see and describe what is being done with the data 
• Huge body of theoretical results for parameter choosing & performance evaluation 
• Parsimonious: no need to assume the covariance properties of the mapped field 

• Velocity (for ) and vorticity (for ) are intrinsically also estimated 
• Natural extendable to elliptical smoothing regions  
• Easily augmented by a robustification step (Cleveland, 1979)  
• Fast: a rate-limiting matrix inversion is 1-2 orders of magnitude smaller than in OI 
• Can increase resolution as data density increases, unlike OI  
• As a linear method, should be able to match the performance of any linear method
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Design Adaptivity 

Mapping a gradient from non uniformly distributed data samples.  Two key take-aways. 
(i) First and higher-order fits are design-adaptive (Fan, 1992) — there is no bias due to 
nonuniform design.  Note, one should never use ! 

(ii) Fixed-population (a.k.a. variable bandwidth) +  fits are even more adaptive.

P = 0
P ≥ 1



Choices of Weighting Kernel 
1. Uniform: 

 
2. Parabolic / Epanechnikov (Epanechnikov, 1969): 

 
3. Bisquare (Brundsdon et. al, 1996): 

 
4. Tricube (Cleveland and Devlin, 1988): 

 
5. Truncated Gaussian (Schlax et al., 2001): 

 

All are defined to vanish for , and ignoring a normalizing constant.
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A Unified Family of Weighting Kernels 
Proposing the beta kernel as a unified family of weighting functions, 

controlled by the two parameters  and .  

Explicitly includes 1–4 from previous slide as special cases, and closely approximates 5. 

Includes all commonly-used forms, allowing for (i) exact computations of theoretical 
properties and (ii) parameter sweeps through a broad class of weighting kernels. 

See Lilly (2023), in prep.
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Moment of the Beta Kernel 
Integral moments needed to deduce the asymptotic behavior of maps generated with the 
beta kernel can be readily solved for. 

 

 

Asymptotic error   

(Ruppert and Wand, 1994; Fan and Gijbels 1996)  
“Asymptotic” in this case means in the limit of a large number of observational points.
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The Inner Radius 
The beta kernel can be reparameterized in terms of the inner radius  

 

defined as the kernel’s half-power point.  Considering  and  as fixed, we obtain  as 

. 

We can then consider the beta kernel to be a function of the inner radius together with , 
which we can term the shape parameter.  For large  or , the beta kernel behaves as 
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The  Family with Varying  γ = 2 β



The  Family with Varying  γ = 3 β



The  Family with Varying  γ = 4 β



Asymptotic Error of Beta Kernel



Optimal Latitude-Dependent Parameters



Latitudinally Varying Inner Radius

Fixed population , fixed , geographically varying bandwidth  and .N = 500 γ = 2 H β



Zonal Mean Weighting Kernels



Inner Radius



Bandwidth or Outer Radius



Kernel  Parameterβ



Original Model SSH Anomaly



Jason-Reconstructed SSH Anomaly



Difference



Root-Mean-Square Error



Model Root-Mean-Square Variability



Mean Curvature Magnitude



Difference Close-Up



Model SSH Anomaly Close-Up



Take-Aways
• Local polynomial fitting with linear or quadratic fit, and variable bandwidth, is highly 

design adaptive, and a promising method for altimetric mapping. 
• Perhaps unintuitively, design adaptivity means that spatially varying kernel properties 

make best use of inhomogeneous data spacing while minimizing artifacts.  
• Jason-only maps rivaling current multimission gridded products suggests 

considerable room for improvements in the latter through mapping refinements.  
• The source of error in between-track curvature, together with the equivalence of linear 

methods, makes it unlikely any method will lead to substantial further improvements. 
• This method is particularly promising when dealing with highly heterogenous data, 

e.g., SWOT + along-track. 
• Great potential for an off-the-shelf, user-applied general-purpose mapping algorithm, 

complementing one-size-fits all black box final products. 



Status
• Fully working version of code already available.  See “polysmooth” in jLab at 

www.jmlilly.net. 
• Completely factored code with O(10x) speed improvement coming soon.  
• Reformatted Jason along-track data w/ noise estimate available at www.jmlilly.net. 
• GOLD-derived OSSE test datasets coming soon.  
• Generalized beta kernel theory and properties complete.  
• Modification for spherical geometry complete.  
• Synoptic and asynoptic error theory complete.  
• Adaption of asymptotic bandwidth selection theory to the 2D problem complete.  
• Writeup in progress! 
• Maybe later… application of anisotropic / elliptical kernels to altimetry. 

The End.   Thanks!!

http://www.jmlilly.net
http://www.jmlilly.net


Jason-Class Along-Track Data

From JasonAlongTrack, a value-added version of the Integrated Multi-Mission Ocean 
Altimeter Data for Climate Research Version 5.1 by Beckley et al.



High-Frequency Noise Estimate



Compare with Next-Highest Band



Global median absolute deviation of high-frequency noise estimate.   
Little dependence on mission. 

Evolution of High-Frequency Noise



The JasonAlongTrack Dataset
We will work with a modified version of the Integrated Multi-Mission Ocean Altimeter 
Data for Climate Research Version 5.1 by Beckley et al., an improved, integrated, ~30 
Jason-class along-track altimeter dataset. 

JasonAlongTrack is a reformatted and value-added version of the Beckley et al. product. 

Lilly, J. M. (2023). JasonAlongTrack: A reformatted version of the Integrated Multi-  
Mission Ocean Altimeter Data for Climate Research Version 5.1 (1.0.0) [Data set]. 
Zenodo. https://doi.org/10.5281/zenodo.10055671

https://doi.org/10.5281/zenodo.10055671

