The 2023 Hybrid Mean Sea Surface.

CLS: P. Schaeffer, M-I. Pujol, P. Veillard, A. Laloue, Y. Faugere, Q. Dagneau, **CNES:** G. Dibarboure, N. Picot

SIO: D. Sandwell, Y. Yu, H. Harper DTU: O. Andersen, A. Abulaitijiang, S. Zhang, S-K. Rose

Overview

This new MSS has been determined using a combination of recent models considered as the most precise which are the SCRIPP_CLS22, CNES_CLS22, and DTU21 MSS's.

The aim was to generate a new MSS by taking advantage of the best properties of each model based on various validations of these 3 MSS (1).

- This work focused on the following points:
- achieving a centimetric accuracy considering the SWOT specification of 1 cm/2 km
- while minimizing residual ocean variability,

DTU21 – CNES_CLS22

- and obtaining the most accurate mapping of the finest topographic structures down to wavelengths of less than 10 km.
- Particular attention has also been paid to the Arctic and Antarctic areas.

DTU21 – SCRIPPS_CLS22

SCRIPPS_CLS22 – CNES_CLS22

- > The low values of the averages imply that these MSSs are "centered" and therefore consistent in term of Sea Level Rise.
- > The standard deviation values show that these MSSs are close in terms of high-resolution content.
- Differences between DTU21 and two other MSSs (SCRIPPS_CLS22, CNES_CLS22) show ocean
- > The standard deviation of differences between SCRIPPS_CLS22 and CNES_CLS 22 is less than

3 different MSSs used

	CNES_CLS22	SCRIPSS_CLS22	DTU21
Data used	Mean profiles from LRM 1Hz : TP/J1/J2/J3 (& interleave), E2/EN/AL, GFO HR measurements with one pass RTK + 5Hz filtering: C2, AL	Background : Based on CNES_CLS MSS for λ > 100 Km HR measurements with two-pass RTK + 5Hz filtering: Geosat, J1/J2, EN, C2, AL, S3	Mean profiles from LRM 1Hz : TP/J1/J2/J3 (& interleave), E2/EN/AL, GFO HR measurements with two-pass RTK + 2Hz filtering: C2, AL, J1/J2
Observations	SSH corrected from oceanic variability (mesoscales & large scales)	SLOPE combined with HEIGTH	SSH (4 parameter estimation of SL variability)
Mapping method	Optimal interpolation + noises budget (white & correlated) + optimal filtering	Biharmonic splines in tension	Optimal interpolation + noises budget

Differences between CNES_CLS22, SCRIPPS_CLS22, DTU21 MSS

Hybridation method

The method is based on the calculation of the RMS of the difference between two MSS which is calculated every 1 minutes in ~10 km boxes of influence (5*5 pixels=25 pixels). And this is only done if the difference between the 2 MSS is greater than 1 cm. Then the algorithm searches for the boundaries of all zones corresponding to these criteria.

More in detail:

- Step 1: Calculation of statistics of the difference between two MSS (Avg,Std,RMS)
- \succ this is only done if the difference between 2 MSS is greater than 1 cm
- > statistics are calculated if there are at least 9 pixels out of the total of 25.
- \succ The rms of the corresponding pixel is saved if -and only if- it is greater than 1.5 cm.
- Step 2: Determining the boundary corresponding to pixels with RMS greater than 1.5 cm.
- Step 3: Filtering the boundary area with size lower than 50 Km (in open ocean)
- Step 4: Remove the first MSS and replace it by the second one

Contribution of the different MSSs

Std (cm) [3σ]

0,80

1,38

1,46

0,06

0,09

0,02

> The Hybrid23 MSS is the result of the combination of SCRIPPS_CLS22 in the open ocean, supplemented by CNES_CLS22 in regions of strong ocean currents and near the coast, and complemented by DTU21 in polar regions.

Validation results

In high variability areas

-0.02 -0.01 0.00 0.01 0.02

 \succ The "blue" part is the part removed from one MSS to be replaced by the other (middle map).

> The difference related to residual variability between SCRIPPS_CLS22 and CNES_CLS22 (left map) is the opposite of the difference between Hybrid23 and SCRIPPS_CLS22 (right map), indicating that most of the residual variability has been effectively removed.

Over the global ocean

- Seen by Sentinel 3 & SWOT-1D: the Hybrid23 MSS is more accurate than the three previous models.
- > The drop in the CNES_CLS15 spectrum after 20 km can be explained by the fact that it was built from 1 Hz data.
- > Analysis of the std on approach to the coast shows that Hybrid23 is superimposed on CNES_CLS22, and that their accuracy is equivalent.

STD(SLA); S3A Cyc 38; WL range [DV km] SLA with SCRIPPS_CNES15_UPDATE SLA with SCRIPPS CNES22 UPDA SLA with DTU18 SLA with DTU21 SLA with CNES1 SLA with CNES22 SLA with Hybrid23 0.12 0.10

In the Arctic

The long wavelength differences between DTU21 and CNES_CLS22 (left) are removed after hybridization (right).

Validation with independent measurements : IceSat-2

These validations show that Hybrid 23 is globally more accurate than CNES_CLS22 and DTU21.

Conclusion and perspectives

Preliminary result using 90 cycles of SWOT 1-Day phase (Pass 26)

> The method used to create the hybrid MSS allowed us to achieve a level of accuracy that is globally better than the three reference solutions.

First comparisons with SWOT swaths show a good consistency of certain topographic structures up to sizes of the order of 10 km. \succ At the same time, these initial results show that SWOT will enable us to access even smaller structures with a centimeter-level of precision.

More details: (1) Comparisons between MSS : Schaeffer et al., 2022: New CNES CLS 2022 mean sea surface. Presentation, OSTST 2022.

