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LAKE GEOID AND GRAVITY FROM ALTIMETRY

Outlier Removal: running median filter, data 3.5 median 
deviations away are removed.

Temporal signal removed and static gravity field extracted 
via state space model, H as a function of space (s) and 
time (t) :

• Temporal signal modeled as a 
Random Walk (RW).

• Spatial signal modeled as Gaussian 
Markov Random Field (GMRF).

Abstract

The data from NASA’s Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) mission offer a unique 
opportunity to map rivers and lakes with an unprecedented number of observations and precision 
in areas where previous radar missions have failed to provide valuable water level estimates. 
ICESat-2 provides an along-track resolution of the ATL03 product better than 1 meter typically 
illuminating a circular region with a diameter of 17 meters. With its three pairs of beams located 
at nadir and 3.3 km to each side, the mission provides exceptional opportunities for inland water 
studies in areas with mountainous topography. In this study, we evaluate the first attempt to 
extract gravity anomalies from altimetry over several medium (100-1000 km2) and large (>1000 
km2) lakes and compare them with conventional radar altimetry to investigate the performance of 
ICESat-2 for gravity determination. Aerial gravimetry from the GRAV-D project over the United 
States are utilized as the best estimate of the gravity field over the lakes. We use radar altimetry 
data from the CryoSat-2 satellite as it has a similar inclination to ICESat-2 giving coverage to within 
2 degrees of the poles. We also use radar altimetry measurements from the SARAL satellite for 
additional comparison. We evaluate the quality of ICESat-2, CryoSat-2, and SARAL for gravity 
determination by computing gravity from each dataset and comparing it with data from the GRAV-D 
project over lakes. Gravity determination from altimetry is done using Fast Fourier Techniques 
(FFT) within a remove-restore geoid-to-gravity approach. The resulting altimetry-derived gravity 
anomalies are then compared to the EGM2008 geoid over each lake to GRAV-D. 18 lakes with area 
ranging from 108 km2 to 82,220 km2 across the United States were considered. Overall, gravity 
determination from ICESat-2 provides more reliable estimates than the other two radar altimetry 
missions. For all considered lakes, the performance of ICESat-2, measured by the standard 
deviation of the difference between ICESat-2 and GRAV-D, is comparable or better than the 
EGM2008 estimates over the same lake. Lake Tustumena is the best performing case, in which the 
standard deviation of the ICESat-2 derived gravity anomaly field is 1.598 standard deviations lower 
than that of EGM2008, with respect to GRAV-D. Over lake Tahoe, which is surrounded by 
mountainous terrain, ICESat-2 performs comparably to EGM2008 and captures the clear signal of 
the gravity field as expected by the lake's bathymetry, whereas CryoSat-2 produces very unstable 
results. In few cases, CryoSat-2 or SARAL seem to outperform both ICESat-2 and GRAVD-D. While 
this is seen for lakes Ontario, Huron, and Salton, it should not be taken to be entirely true. This is 
because for these lakes, CryoSat-2 and SARAL often have groundtracks covering only a part of the 
lake, resulting in seemingly lower standard deviations. Additionally, it is important to consider that 
for many of the medium lakes, GRAV-D coverage is sparse, thus it is hard to assert that EGM2008 
truly performs better or worse than ICESat-2. Despite this, the method presented here for deriving 
gravity anomalies from altimetry applied to ICESat-2 laser altimetry data produces results 
comparable in trend and magnitude to the GRAV-D project.
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Where the flattening parameter f , semi-major axis a, semi-minor axis b, angular velocity of Earth !, and Earth’s gravitational228

constant GM are the WGS-84 ellipsoid values. The parameter m is calculated from these constants by Eq. 10, and � is the geodetic229

latitude.230

m =
!2a2b
GM

(10)

The correction for the normal gravity on the ellipsoid (�0 = �normal_ellipsoid_sur f ace) is calculated using the Somigliana-Pizetti231

normal gravity formula (Hofmann & Moritz (2006)).232

�0 = �normal_ellipsoid_sur f ace =
a�acos2� + b�bsin2�
p

a2cos2� + b2sin2�
(11)

The equatorial normal gravity �a and polar normal gravity �b are the WGS-84 ellipsoid values.233

4. Comparison with GRAV-D airborne gravity data234

Lake Area [km2] Max Depth [m] �EGM08�G �I2�G �C2�G �S A�G

Butte Des Morts 108 3 0.604 1.128 41.930 4.3110
Maurepas 249 3 0.697 0.574 46.547 8.0670
Tustumena 296 290 5.640 4.042 25.002 15.7520
Pend Orielle 328 351 6.573 13.591 27.262 15.1170
Tahoe 495 501 10.226 15.301 5160.913 12.5660
Mille Lacs 516 13 4.117 3.074 7.650 3.9500
Winnebago 536 6 1.676 10.057 21.322 11.1580
Teshekpuk 857 10 2.494 2.477 2.500 7.7040
Salton 895 16 11.360 11.440 70.355 15.2590
St. Clair 1121 8 4.093 5.128 62.005 6.6810
Becharof 1171 183 5.912 5.888 5.946 6.8037
Okeechobee 1287 4 6.574 6.460 52.658 10.5410
Pontchartrain 1558 20 1.805 1.810 41.189 4.8140
Shoal Lake 3529 64 4.816 4.725 30.662 6.4994
Ontario 19595 244 4.207 4.272 4.305 4.2873
Erie 25711 64 4.070 4.067 3.982 4.0258
Huron 59280 229 3.593 3.623 3.639 3.6597
Superior 82220 406 8.072 9.323 9.291 9.4092

Table 2: Performance of altimetry derived gravity fields compared to the performance of EGM08 over U.S. lakes with respect to GRAV-D gravity survey measure-
ments. All values are in mGal. Rows with gray highlight indicate that the ICESat-2 derived gravity anomalies compare better to the GRAV-D measurements than
the EGM08 over the lake.

To compare with the GRAV-D free-air anomalies, the satellite altimetry derived gravity anomaly fields are interpolated to the235

coordinate points of the GRAV-D product. The standard deviations of the di↵erence between the interpolated altimetry values and236

the GRAV-D values are then compared for each satellite (ICESat-2, CryoSat-2, and SARAL) as well as to EGM2008. This is to237

identify if using satellite altimetry derived gravity fields provides the user with more information than if only EGM2008 is used.238

The results of this comparison are shown in Table 2. �EGM08�G, �I2�G, �C2�G and �S A�G show the standard deviation for239

altimetry derived values (or EGM2008 values) interpolated to GRAV-D coordinate points and then subtracted from the GRAV-D240

product for EGM2008, ICESat-2, CryoSat-2 and SARAL, respectively. Overall, ICESat-2 derived gravity anomalies are comparable241

or better than the EGM2008 field with respect to GRAV-D. The table values highlighted in gray indicate the 8 out of 18 considered242

lakes over which ICESat-2 derived gravity anomalies outperform the EGM2008 gravity field. In almost all of the unhighlighted243
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3.2. Gaussian Markov Random Fields applied to altimetry data 173

The resulting cleaned data contain variation both spatially (varying gravity structures across the lake) and temporally (seasonal 174

and multi-year trends in lake height). To estimate the gravity signal we must separate the static spatial part of the lake levels from 175

the temporal variations. This is done by setting up a state-space model, more specifically, a given lake-level observation H is a 176

function of space s and time t and is described by 177

Ht,s = !s + µt + ✏t,s, where ✏t,s ⇠ N(0,�2
obs). (1)

Here t = 1, . . . ,N where N is the number of time steps and s = 1, . . . ,M where M is the number of cells in the spatial field !s. 178

Here ✏t,s is the noise term of the observations which is assumed to be Normal distributed, µt represents the mean lake level at the 179

time t and is here described via a random walk, and the spatial field !s is described via a Gaussian Markov random field (Rue & 180

Held, 2005) as 181

µt = µt�1 + ⌘t, where ⌘t ⇠ N(0, (t � (t � 1))�2
RW ). (2)

Here �RW is the standard deviation of the Random walk, which here is scaled by the time di↵erence between the current and 182

previous time. This is done to account for non-equidistant time steps as the standard deviation should increase with increasing time 183

steps. 184

!s ⇠ N(0,�2
!Q�1) (3)

Here, the precision matrix Q (the inverse of the correlation matrix) is defined as Q = �Q0+ I, where � is a parameter that controls 185

the correlation and Q0 specifies the neighboring structure and is given by 186

Q0(i, j) =

8>>><
>>>:

#neighbors, if i = j,
�1, if i ⇠ j,
0, otherwise.

(4)

The Q0 is a sparse matrix with the dimension M ⇥ M. The formulation i ⇠ j specifies that grid cell j is a neighbor to grid cells 187

i). A given grid cell can have up to 4 neighbors. 188

The state space model is implemented using the “R” package “Template Model Builder (TMB)” (Kristensen et al. (2016)). The 189

software is open source and available at http://tmb-project.org/. This software uses the Laplace approximation to calculate the joint 190

likelihood function of the observations and the random e↵ect allowing us to estimate the model parameters ✓ = (�obs,�RW , ✓!, �) 191

and random e↵ects µ and ! via estimated by Maximum Likelihood Estimation (ML). 192

The static height field of the surface is estimated on a predefined grid, bounded by the respective lake polygon (4 km resolution 193

for Great Lakes, 1 km for all other lakes). An example of the estimated GMRF and the temporal trend is shown in Fig. 4 for 194

lake Huron for both ICESat-2 and CryoSat-2 altimertry data. The results from the SARAL are not shown here as the results are 195

incomparable to the other altimetry measurements due to the extremely small number of groundtrack crossings (see Fig. 2). The 196

grids produced by the GMRF method used here are limited by the minimum and maximum latitude and longitude recorded by 197

the satellite. This means that the field at points outside of the box defined by the measurement extent will not be predicted. This 198

provides constraints only to the SARAL derived fields, as the other two altimetry satellites provide much more coverage. 199
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Remove-restore geoid-to-gravity approach utilizing Fast Fourier Techniques (FFT) (Andersen & 
Knudsen (1998)). 

• EGM2008 (Pavlis et. Al. (2012)) is first removed from the lake height data.
• The gravity anomalies, Δ𝑔, are computed from geoid undulations N and the normal gravity 𝛾.

• Weiner filtering 𝐹(𝜔) for dampening higher order frequencies. A cutoff frequency of 6 km has 
been determined empirically.
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et al. (2010)). The data are cross-over adjusted to reduce track-oriented noise and then converted to a regular grid of 2 km resolution 203

corresponding to 1/60 degree. From here the gridded data are passed through the GMRF scheme to remove the temporal signal and 204

obtain the static gravity field over the lake. 205

The field of surface height anomalies from EGM2008 are treated as geoid undulations for the following steps. We utilize the 206

GRAVSOFT package (Tscherning et al. (1992)) for data grid interpolation and for performing the FFT method for the geoid-to- 207

gravity approach presented in Andersen & Knudsen (1998). Gravity anomalies (�g) are calculated from geoid undulations (N) in 208

the frequency domain (u, ⌫) by the following equation: 209

�ĝ(u, ⌫) ⇡ !�Ñ(u, ⌫)F(!) (5)

In which!2 = u2+⌫2 and � is the normal gravity. The Wiener filtering function F(!) is utilized to dampen the higher frequencies 210

that the free-air gravity anomalies are sensitive to (Andersen & Knudsen (1998), Forsberg (1998)). 211

F(!) =
!4

c

!4 + !4
c

(6)

In which !c is the cuto↵ frequency. Here we have determined through empirical methods a cuto↵ frequency of 6 km. Lastly, we 212

restore the EGM2008 gravity field back and compare the extracted gravity field with the GRAV-D product. 213

3.4. Processing GRAV-D data 214

The data from GRAV-D are provided as the full field gravity (FFG) at altitude from NGS at https://geodesy.noaa.gov/GRAV-D/. 215

For comparison with the altimetry derived gravity fields, free-air gravity anomalies (FAA) are calculated from the full field gravity 216

with respect to the EGM2008 geoid (Pavlis et al. (2012)) and the WGS-84 ellipsoid (NGA (2008))). The free-air gravity anomaly 217

is calculated by correcting the full field gravity at altitude for the free-air e↵ect (gFAC_geoid) and the normal gravity on the ellipsoid 218

(�normal_ellipsoid_sur f ace). The equations used here to make this conversion are those presented in the GRAV-D user manual (GRAV-D 219

Team (2014)). 220

gFAA = gobservedFFG � gFAC_geoid � �normal_ellipsoid_sur f ace (7)

Horth ⇡ h � N (8)

Where gFAA is the free-air anomaly and gobservedFFG is the observed full field gravity at altitude. The free-air correction gFAC_geoid 221

is a second order equation calculated using the orthometric height, Horth, by Eg. 9. The orthometric heights are calculated using 222

EGM2008 following Eq. 8, where h is the ellipsoidal height and N is the EGM2008 geoid height. For this conversion, the 223

geoid height values are interpolated from the EGM2008 2.5 x 2.5 undulation grid to the WGS-84 coordinates of the GRAV-D 224

measurement locations using a script provided by NGA (2008). We assume that the orthometric heights are along the ellipsoidal 225

normal and take the approximation to the free-air correction equation presented by (Damiani et al. (2013), Featherstone & Dentith 226

(1997), Featherstone (1995)). 227

gFAC_geoid =
@�

@h
Horth +

1
2
@2�

@h2 H2
orth ⇡ �

2�0

a

⇣
1 + f + m � 2 f sin2�

⌘
Horth +

3�0

a2 H2
orth (9)
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�ĝ(u, ⌫) ⇡ !�Ñ(u, ⌫)F(!) (5)

In which!2 = u2+⌫2 and � is the normal gravity. The Wiener filtering function F(!) is utilized to dampen the higher frequencies 210

that the free-air gravity anomalies are sensitive to (Andersen & Knudsen (1998), Forsberg (1998)). 211

F(!) =
!4

c

!4 + !4
c

(6)

In which !c is the cuto↵ frequency. Here we have determined through empirical methods a cuto↵ frequency of 6 km. Lastly, we 212

restore the EGM2008 gravity field back and compare the extracted gravity field with the GRAV-D product. 213

3.4. Processing GRAV-D data 214

The data from GRAV-D are provided as the full field gravity (FFG) at altitude from NGS at https://geodesy.noaa.gov/GRAV-D/. 215

For comparison with the altimetry derived gravity fields, free-air gravity anomalies (FAA) are calculated from the full field gravity 216

with respect to the EGM2008 geoid (Pavlis et al. (2012)) and the WGS-84 ellipsoid (NGA (2008))). The free-air gravity anomaly 217

is calculated by correcting the full field gravity at altitude for the free-air e↵ect (gFAC_geoid) and the normal gravity on the ellipsoid 218

(�normal_ellipsoid_sur f ace). The equations used here to make this conversion are those presented in the GRAV-D user manual (GRAV-D 219

Team (2014)). 220

gFAA = gobservedFFG � gFAC_geoid � �normal_ellipsoid_sur f ace (7)

Horth ⇡ h � N (8)

Where gFAA is the free-air anomaly and gobservedFFG is the observed full field gravity at altitude. The free-air correction gFAC_geoid 221

is a second order equation calculated using the orthometric height, Horth, by Eg. 9. The orthometric heights are calculated using 222

EGM2008 following Eq. 8, where h is the ellipsoidal height and N is the EGM2008 geoid height. For this conversion, the 223

geoid height values are interpolated from the EGM2008 2.5 x 2.5 undulation grid to the WGS-84 coordinates of the GRAV-D 224

measurement locations using a script provided by NGA (2008). We assume that the orthometric heights are along the ellipsoidal 225

normal and take the approximation to the free-air correction equation presented by (Damiani et al. (2013), Featherstone & Dentith 226

(1997), Featherstone (1995)). 227

gFAC_geoid =
@�

@h
Horth +

1
2
@2�

@h2 H2
orth ⇡ �

2�0

a

⇣
1 + f + m � 2 f sin2�

⌘
Horth +

3�0

a2 H2
orth (9)

On the right: Study lake 
locations, CryoSat-2 Modes and 
GRAV-D availability.

Below: Ground tracks for 6 of 
the 18 lakes considered in the 
study.


