Validation of Sentinel-3A/B baseline collection BC_005 over ocean

F. Nencioli¹, L. Rinchiuso¹, P. Prandi¹, C. Durnad¹, B. Lucas², S. Dinardo² and C. Nogueira-Loddo²

¹ Collecte Localisation Satellites, ² EUMETSAT

2023 OSTST, 2023-11-09

fnencioli@groupcls.com

The COPAS project

COPernicus ALTimetry Service for the Sentinel-3 mission

- Started on May 2022
- Regular monitoring of Sentinel-3 Surface Topography Mission (STM) performance over the oceans

The COPAS project

COPernicus ALTimetry Service for the Sentinel-3 mission

- Started on May 2022
- Regular monitoring of Sentinel-3 Surface Topography Mission (STM) performance over the oceans

Monitoring activities presented today:

- Validation of the ground processing and final products
- Assessment of the overall mission performance
- Support for the continuous improvement of the S-3 STM performance

Baseline Collection BC_005

- Processing baseline (PB) SM__WAT.005.02 deployed operationally on 9 March 2023 https://www.eumetsat.int/new-evolution-sentinel-3-altimetry-products
- Full mission reprocessing released on 31 July 2023

https://www.eumetsat.int/release-sentinel-3-altimetry-marine-bc005-reprocessed-dataset

2 016	2017 2018	2019	2020	2021	2022	2023	2024	2025	 SMWAT.005.02.00 (SRAL/MWR L2 Marine)
					SM_	BC005 			 SR_L1M.005.01.00 (SRAL L1 Marine)
	S3A REP	9 BC005> EO S3B REP E		: 0834 :EUM:DAT:	:0834		 MW_L1005.01.00 (MWR L1 Global) Release notes document her: https://www.eumetsat.int/media/51161 		

Replaces Baseline Collection 004 to correct limitations identified from monitoring activities

BC_004 limitations: Cyclic reports

Available from Sentinel-3 Knowledge Base site: https://eumetsatspace.atlassian.net/wiki/spaces/PQ/pages/ 1828126721/Sentinel-3+cyclic+reports

Spaces ~ Apps ~ Templ	ates Crea	te								Q Se	earch	0
Product Quality and Evol												
 Product Quality and Data Formats, Sentinel-3 Sentinel-6 CONTENT Sentinel-3 product qu S3 mission timelines 	The Senti includes i well as cru or using t	inel-3 alt nel-3 ocean vali nformation on: ossover analysis he products to formance Repo	dation cyclic p missing measu between the t create longer t	erformance reț rements, analy wo missions. T erm records.	ports for altime rsis of the geop he detailed infe	hysical parame	eters provided (se reports wou	(significant wav uld be useful fo	re height, back r users seeking	scattering coef J to understand	ficients, and wi I missing or an	nd speed; as omalous data,
✓ S3 product quality	Year	Sentinel-3 C)cean Validati	on Cyclic Perfe	ormance Repo	rts (Altimetry)					
 OLCI product qua SLSTR product q S3 altimetry prod Sentinel-3 alti 	2022	Cycle 82/83 (S3A) & 63 (S3B)	Cycle 83/84 (S3A) & 64 (S3B)	Cycle 84/85 (S3A) & 65 (S3B)	Cycle 85/86 (S3A) & 66 (S3B)	Cycle 86/87 (S3A) & 67 (S3B)	Cycle 87/88 (S3A) & 68 (S3B)	Cycle 88/89 (S3A) & 69 (S3B)	Cycle 89/90 (S3A) & 70 (S3B)	Cycle 90/91 (S3A) & 71 (S3B)	Cycle 91/92 (S3A) & 72 (S3B)	Cycle 92/93 (S3A) & 73 (S3B)
Sentinel-3 alti S3 product evolutions Sentinel-6 product qu Terms and conditions	2023	Cycle 93/94 (S3A) & 74 (S3B)	Cycle 94/95 (S3A) & 75 (S3B)	Cycle 95/96 (S3A) & 76 (S3B)	Cycle 96/97 (S3A) & 77 (S3B)	Cycle 97/98 (S3A) & 78 (S3B)	Cycle 98/99 (S3A) & 79(S3B)	Cycle 99/100 (S3A) & 80 (S3B)	Cycle 100/101 (S3A) & 81 (S3B)	Cycle 101/102 (S3A) & 82 (S3B)	Cycle 102/103 (S3A) & 83 (S3B)	

BC_004 limitations: Cyclic reports X-over analysis

S3A-S3B SSH differences

 Slope in both SAR and PLRM time series

 Issues with long-term stability of one (or both missions)

From cyclic report: Cycle 85/86 (S3A) & 66 (S3B)

- 6 -

BC_004 limitations: Cyclic reports Long term trends

Multi-mission comparison

- Bias between modes
- Bias between satellites
- Bias wrt Jason-3

From cyclic report: Cycle 85/86 (S3A) & 66 (S3B)

BC_004 limitations: Cyclic reports Long term trends

Multi-mission comparison

- Bias between modes
- Bias between satellites
- Bias wrt Jason-3

No positive trend for S3B

 S3A SAR trend steeper than Jason-3 (by ~1.2 mm/year)

S CLS

- 8 -

From cyclic report: Cycle 85/86 (S3A) & 66 (S3B)

BC_004 limitations: Annual reports

From BC_005 full mission reprocessing dataset release news: https://www.eumetsat.int/release-sentinel-3-altimetry-marine-bc005reprocessed-dataset

EUMETSAT	IMAGES	SATELLITES	ABOUT US NEWS &	EVENTS		Q					
	More details about the BC005. The data can be assessed from the Data Store, the same source to obtain Operational data, but on dedicated collections for the BC005 datasets:										
		Re	eprocessed dataset (BC005)	Collection ID	Collection ID Data Store direct link (available from 31 July 2023)						
		SR	RAL/MWR Level 2 (SR_2_WAT)	EO:EUM:DAT:0834	https://data.eumetsat.int/product/EO:EUM:DAT:0834						
		SR	RAL Level 1B (SR_1_SRA)	EO:EUM:DAT:0833	https://data.eumetsat.int/product/EO:EUM:DAT:0833						
		SR	RAL Level 1A (SR_1_SRA_A_)	EO:EUM:DAT:0836	https://data.eumetsat.int/product/EO:EUM:DAT:0836						
		SR	RAL Level 1B-S (SR_1_SRA_BS)	EO:EUM:DAT:0835	https://data.eumetsat.int/product/EO:EUM:DAT:0835						
					d information about the reprocessed dataset.						
		The	following COPAS reports prov	ide an assessment o	f the reprocessed dataset:						
S3 Altimetry comparison with tide gauges S3 Altimetry Wind & Waves performance S3 Altimetry high-latitude performance S3 Altimetry high-atitude performance S3 MWR assessment and comparison with in-situ											
		For r	more information, contact our	User Service Helpde	sk.						

https://www.eumetsat.int/media/51601

BC_004 limitations: Annual reports TG-Alti analysis

Comparison with GLOSS/CLIVAR Tide Gauges observations

- High frequency sampling (hourly)
- North hemisphere biases as limited as possible
- "Fast Delivery" (couple of months)

BC_004 limitations: Annual reports TG-Alti analysis

Comparison with GLOSS/CLIVAR Tide Gauges observations

- High frequency sampling (hourly)
- North hemisphere biases as limited as possible
- "Fast Delivery" (couple of months)

t-series of global mean SSHA difference: S3B - TG

Negative slope => No positive trend for S3B

BC_004 limitations: Previous OSTST results

Slide from OSTST 2020 presentation by E. Cadier et al.

- Latitudinal bands = > due to PLRM echo centering
- Geographical patterns (OLTC vs MMS differences) => SAR echo centering sensitivity
- Similar patterns also in SWH (not shown)
- Differences of few mm only (!!!)....but still to be corrected

From BC_004 to BC_005: Full change list

Update from BC_004 to BC_005 in two successive steps

\odot BC_005.01 deployed on 7 July 2022

https://www.eumetsat.int/new-sentinel-3-altimetry-processing-baseline-collection-005

SRAL/MWR L2 (v7.01)

- Updates to the SSHA
 - New Mean Sea Surfaces
 - Combined MSS, CNES/CLS15, SIO, DUT15 (new default MSS)
 - DTU21 (including accuracies information)
 - New Pole Tide solution (Desai 2017).
 - Internal tides and long tide non-equilibrium now applied to calculate SSHA
 - Dynamic Atmospheric Correction (DAC/MOG2D) available in NRT and applied to the SSHA.
 - New Sea State Bias (Tran 2021) derived from S3A SAR/PLRM for Ku-band.
 - Real Zero Masking from L1B data applied at SAR L2 (all timeliness).
 - Range Walk (applied at SAR L1, only NTC).
- GPD+ Wet Tropospheric Correction available for NTC timeliness (not yet applied to the SSHA).
- More information to the user:
 - Processing Baseline; All system bias; etc.
- No-more (land-)ice variables being generated by Marine products.
- Wind and Waves: Updates to mean values of SWH and Wind Speed due to Range Walk, Zero Masking and system bias updates for better alignment

SRAL L1 (v6.23)

- Correction of USO reading (relevant for all S3B data).
- Removal of CAL2 application to CAL1.
- CAL1 range correction generated using CoG (centre of gravity) method.
- New CAL2 normalization, by plateau instead of max
- Range Walk correction is now applied to SAR mode (NTC only currently).

$\,\circ\,$ BC_005.02 deployed on 9 March 2023

https://www.eumetsat.int/new-evolution-sentinel-3altimetry-products

SRAL/MWR L2 (v7.03)

- Update of mean values for SSHA (and its corrections) and SWH and Wind Speed.
- Application of GPD+ Wet Tropospheric Correction (WTC) to SSHA (NTC only).
- Addition of Wind Speed calculated from Sigma0 and SWH (like Sentinel-6).
- Addition of quality flags for SSHA, SWH, Wind (at 1Hz measurement level)
- Update of the 1Hz data generation method, to include strict MQE screening preventing bad 20Hz data to be used on 1Hz
- Addition of information (in the netCDFs) about the bias applied in the L2 products.
- Addition of sea ice concentration information at 1Hz.
- Addition of SRAL acquisition mode at 1Hz.
- Addition of information regarding the WTC applied to build the SSHA.
- Correction of the geoid (EGM2008) since the version used previously on the product had an error.
- Elevation from sea-ice/ocog retrackers now uses high frequency dynamic atmospheric pressure correction.
- Correction of S3B cycle number on the first pass of the cycle netCDF only.
- Improved radiometer quality flag, especially during lunar calibration events.

Full mission reprocessing based on BC_005.02

Full info in the Product Notice

https://www.eumetsat.int/media/50766

- 13 -

From BC_004 to BC_005: Specific changes

Corrections

- Range Walk (applied at SAR L1, only NTC)
- Correction of USO reading (relevant for all S3B data)
- Real Zero Masking from L1B data applied at SAR L2 (all timeliness).

PLRM pulse alignment

- Internal tides and long tide non-equilibrium now applied to calculate SSHA.
- New Sea State Bias (Tran 2021) derived from S3A SAR/PLRM for Ku-band
- Application of GPD+ Wet Tropospheric Correction (WTC) to SSHA
- New mean sea surface

<u>Goals</u>

- Direct impact on range
- Improve stability of GMSL t-series

 Correct mm scale geographical patterns

 Improve overall SSHA performance

- 14 -

Dataset used for the analysis

- Full mission reprocessing covers (with some holes)

 For S3A: from 05/05/2016 to 09/03/2023
 For S3B: from 08/05/2018 to 09/03/2023
- FMR validation until 11/06/2022 (when the new baseline BC_005.01 was implemented in NTC)
 - For S3A: from 05/05/2016 to 11/06/2022 (C004P002 C086P395)
 - For S3B: from 01/06/2018 to 11/06/2022 (C008P004 C067P110)

[Note: May 2018 for S3B is not in dataset because of drift + some doubled pass numbers]

• Focus on next slides on S3A (S3B shows similar results)

BC_005 improvements: Geographical patterns

Binned maps (2° x 2°) of mean SARM – PLRM range differences

- Same latitudinal bands as seen in Cadier et al. 2020 OSTST presentation
- Impact visible on other variables (sigma0, wind, swh, iono correction, SSHA)

BC_005 improvements: Geographical patterns

- Same latitudinal bands as seen in Cadier et al. 2020 OSTST presentation
- Impact visible on other variables (sigma0, wind, swh, iono correction, SSHA)

Corrected in BC_005 (mainly by PLRM pulse alignment)

BC_005 improvements: Overall SSHA performance

SARM SSHA mono-mission differences at X-overs (10-days max)

- Time-series of std per cycle
- BC_004 and BC_005

- Binned maps of std of BC_004 BC_005 difference
- Red is good (reduced noise)

Reduction on 1 mm on average (mostly due to internal tide correction)

BC_005 improvements: Overall SSHA performance

Spectra of SARM SSHA

- BC_004 and BC_005
- Computed for 2019
- Computed over segment of 1000 km
- Little "bump" at ~10km in BC_004
- Not observed in "orbit-range-mss" spectra (usually used to assess instrument performance from spectral analysis)
- Bump largely removed in BC_005
- Largest contribution from SSB correction...
- ...but further analysis required

SARM SSHA multi-mission differences at X-overs (10-days max)

Time-series of mean per cycle: S3B – S3A
BC_004 and BC_005

- Time-series of mean per cycle: J3 S3B
- o BC_004 and BC_005

- Consistency between all missions (S3A, S3B, J3)
- Mainly due to Range Walk and USO Correction (for S3B)

- 20 -

- Consistency between all missions (S3A, S3B, J3)
- Mainly due to Range Walk and USO Correction (for S3B)

- Consistency between all missions (S3A, S3B, J3)
- Mainly due to Range Walk and USO Correction (for S3B)

Global mean SSH differences: Tide gauges - Sentinel-3

• BC_004 and BC_005 (sorry about that!!!)

Sentinel-3A and 3B trend consistent with in-situ observations

BC_005 remaining issues: Missing observations

- Some passes without any observation available
- Due to multiple causes

Will be recovered (wherever possible) for future reprocessing campaigns

BC_005 remaining issues: Geographical dependencies

Binned maps (2° x 2°) of asc – dsc differences of mean SARM – PLRM range differences

- <u>High values appear in regions with strong along track winds</u> (Eastern Boundary of all Ocean Basins)
- To be corrected in future BC

Conclusions

B005_02 improvements

- Geographically correlated errors (mm-scale) further mitigated
- Improved overall SSHA performance:

➢ Reduced x-over SSHA std

Removed small spectral bump

Greatly improved long-term SSHA stability

S3A and S3B long-term slopes aligned with reference missions (J3 and S6)
 S3A and S3B long-term slopes aligned with in-situ tide-gauge observations

Due to the recent full mission reprocessing, there is consistency from the beginning of the mission with the data currently being produced operationally

COPAS S3 Monitoring Reports

Full BC_005 mission reprocessing report to be released soon

Many reports already available from EUMETSAT

- **Cyclic reports:**
 - Overall S3 Ocean Surface Topography performance

https://eumetsatspace.atlassian.net/wiki/spaces/PQ/pages/1828126721/Sentinel-3+altimetry+cyclic+reports

- ➢Quarterly reports:
 - SRAL
 - MWR

https://eumetsatspace.atlassian.net/wiki/spaces/PQ/pages/1994489857/Sentinel-3+altimetry+quarterly+reports <u>Annual reports</u> (comparison with in-situ observations):

- MWR
- SWH & Wind
- High latitude performance
- TG/Alti comlparison

https://www.eumetsat.int/media/51603

- https://www.eumetsat.int/media/51604
- Ce https://www.eumetsat.int/media/51602
 - https://www.eumetsat.int/media/51601

