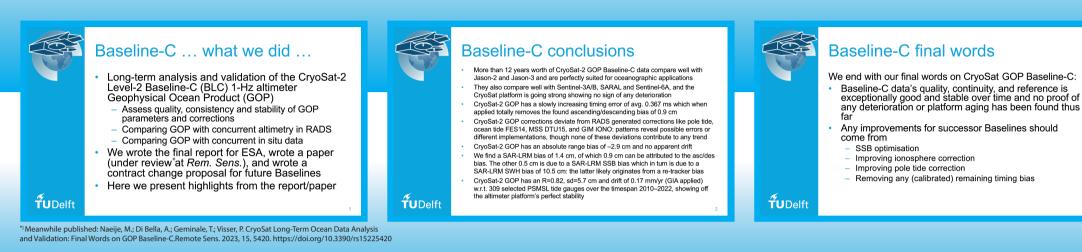
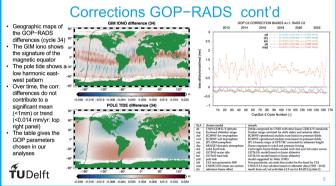


Ocean Surface Topography Science Team Meeting 7 to 11 NOV, 2023, SAN JUAN, PUERTO RICO


CryoSat Long-Term Ocean Data Analysis and Validation: final words on GOP Baseline-C


CVL2023_011

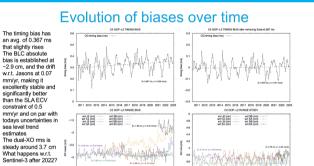
Marc Naeije¹ (m.c.naeije@tudelft.nl), Ernst Schrama¹, Alessandro Di Bella², <u>Ourania Altiparmaki¹</u>

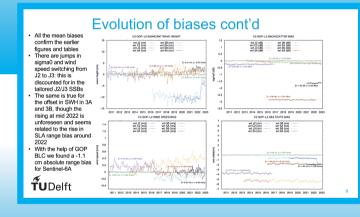
¹TU Delft/AE, The Netherlands ²ESA/ESRIN, Italy

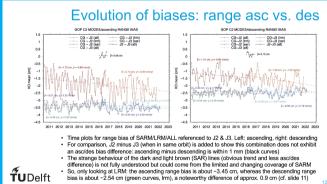
Corrections GOP-RADS pass 840 (34) 1 Hz P2P GOP BLC corrections minus *RADSified* corrections: Mostly within 1 mm like the within 1 mm like the one for dry tropo The GIM ionosphere correction stands out: RADS and GOP differ in how the GNSS TEC maps are processed. It is yet undecisive which solution is better Also the pole tide and FES cocan tide corrections raise concern with their 40 60 -20 0 Latitute cdeg> 40 60 80 -40 -20 0 Latitude cdep: Works concern with their zigzag patterns **TU**Delft

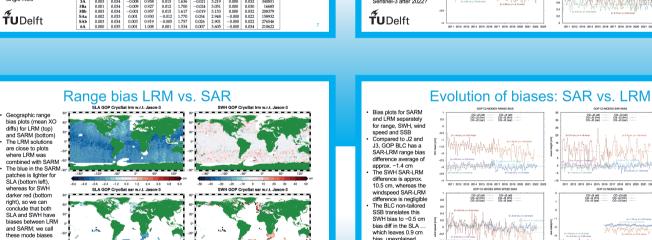
TUDelft

CryoSat-2 crossovers analysis

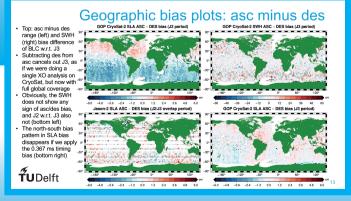

We cross GOP passes (CG: cycles 4–165) with Jason-2 (J2:75–303), Jason-3 (J3:0–227), Sentinel-3A (3A:1–94), Sentinel-3B (3B:19–75), SARAL (SAa:1–35) SARAL (SAb:36–104), Sentinel 6-A (6A:4-81) and RADS CryoSat-2 (C2:4–165) Maximum crossover time difference is 2 days to have not too much changes in the dynamically varying sea level: less days would not leave enough crossovers Increased ocean surface variability is bypassed by a crossover difference edit criterion of 2×sd (95% confidence level)

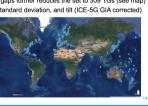

To exclude sea ice areas the analyses are limited between 70° S and 70° N. This also excludes the high number of crossovers in the polar regions CryoSat-2 compared with Jason 2 (crossover or XO difference CG – J2) gives


range bias referenced to Jason-2 but as both have their height data referenced to the TOPEX reference ellipsoid and for Jason-2 already a calibrated range bias is applied, the actual XO or range difference is consequently referenced to TOPEX and can be considered the absolute bias


<u> </u>					1:46		-	-	+-	+1-+	inc	
	10	SSC	νε	er c	1110	ere	enc	e s	કાa	แรเ	ICS.	5
	w.r.t.	SLA	[m]	SWF	[[m]	σ ⁰ [dB1	WIND	[m/s]	SSB	[m]	XOs [no.]
 Crossover statistics 		mean	sd	mean	sd	mean	sd	mean	sd	mean	sd	res (no.)
from the dual-XOs	C2	-0.029	0.035	0.000	0.710	0.001	1.585	-0.003	2.770	-0.000	0.032	343365
analyses (top) and	J2a	-0.029	0.037	0.002	1.006	-0.257	1.451	0.167	3.521	-0.038	0.038	1133727
single-XOs (bottom)	J2b	-0.028	0.036	0.008	0.998	-0.249	1.485	0.143	3.545	-0.037	0.038	116963
GOP BLC is of similar	J2c	-0.029	0.037	0.001	1.006	-0.232	1.487	0.073	3.593	-0.038	0.038	177958
	J2d	-0.029	0.037	0.008	1.008	-0.254	1.490	0.124	3.520	-0.038	0.038	160395
quality as the Jasons,	J3a 13b	-0.029	0.037	0.010	1.015	-2.863 -2.850	1.521 1.500	-0.011	3.605 3.563	-0.018 -0.019	0.038	1286827 135512
the Sentinels, and both	3A	-0.026	0.039	-0.093	0.952	-2.850	1.500	-0.064	3.563	-0.019	0.038	620735
SARAL phases	3Ba	-0.029	0.037	-0.093	0.952	-0.128	1.517	-0.051	3.199	-0.008	0.036	31053
The avg. SLA range	3Bb	-0.028	0.037	-0.099	0.953	-0.173	1.513	0.032	3.238	-0.007	0.036	375064
	SAa	-0.027	0.037	-0.002	0.945	-0.043	1.634	0.115	3.175	-0.053	0.037	288403
bias is -2.9 cm, an	SAb	-0.023	0.037	0.010	0.936	-0.131	1.635	0.323	3.146	-0.054	0.037	529370
improvement of 3.4 cm	6A	-0.018	0.038	0.023	1.017	-1.641	1.484	0.019	3.574	-0.019	0.038	428821
over Baseline-B	avg	-0.029	0.037									
Overall 3.7 cm sd of	-	SLA		SWE		σ ⁰ [WIND		SSB		XOs [no.]
GOP XO diffs, which is		mean	sd	mean	sd	mean	sd	mean	sd	mean	sd	
	CG	-0.007	0.035	-0.000	0.715	-0.005	1.591	-0.013	2.788	0.000	0.032	179905
on par with the Jasons	C2 12a	-0.007	0.035	0.002	0.981	-0.003	1.586 1.440	-0.014	2.765 3.440	0.000	0.032	128201 522648
 We see improvements 	J2a I2b	0.000	0.034	-0.003	0.981	0.003	1.440	-0.008	3.440	0.000	0.032	51426
in wind speed and swh	120 12c	0.000	0.033	-0.001	0.978	-0.008	1.470	0.018	3.482	0.000	0.032	51426 80525
We do notice a non-zero	12d	0.001	0.034	0.004	0.983	0.008	1.490	-0.010	3.448	-0.000	0.031	71546
SLA mean in CG/C2's	13a	0.000	0.035	0.001	1.006	0.004	1.571	-0.003	3.623	0.000	0.034	608933
	135	0.000	0.038	0.002	1.003	-0.003	1.553	0.014	3.632	-0.000	0.034	74187
single-XOs	3A	0.003	0.034	-0.008	0.958	0.015	1.636	-0.021	3.219	0.000	0.032	340851

٥ (dB]	WIND	[m/s]	SSB	[m]	XOs [no.]
a	sd	mean	sd	mean	sd	
1	1.585	-0.003	2.770	-0.000	0.032	343365
7	1.451	0.167	3.521	-0.038	0.038	1133727
9	1.485	0.143	3.545	-0.037	0.038	116963
2	1.487	0.073	3.593	-0.038	0.038	177958
4	1.490	0.124	3.520	-0.038	0.038	160395
3	1.521	-0.011	3.605	-0.018	0.038	1286827
0	1.500	-0.064	3.563	-0.019	0.038	135512
8	1.517	-0.148	3.275	-0.008	0.036	620735
3	1.547	-0.051	3.199	-0.007	0.036	31053
7	1.513	0.032	3.238	-0.008	0.036	375064
3	1.634	0.115	3.175	-0.053	0.037	288403
1	1.635	0.323	3.146	-0.054	0.037	529370
1	1.484	0.019	3.574	-0.019	0.038	428821
দ	±B]	WIND	[m/s]	SSB	[m]	XOs [no.]
x]	sd	mean	sd	mean	sd	
6	1.591	-0.013	2.788	0.000	0.032	179905
8	1.586	-0.014	2.765	0.000	0.032	128201
3	1.440	-0.006	3.440	0.000	0.032	522648
3	1.470	-0.002	3.482	0.000	0.032	51426
8	1.464	0.018	3.511	0.000	0.032	80525
8	1.490	-0.010	3.448	-0.000	0.031	71546
4	1.571	-0.003	3.623	0.000	0.034	608933
8	1.553	0.014	3.632	-0.000	0.034	74187
5	1.636	-0.021	3.219	0.000	0.032	340851
2	1.700	-0.024	3.051	0.000	0.030	16685
	1 617	0.010	3 1 5 3	0.000	0.022	208220

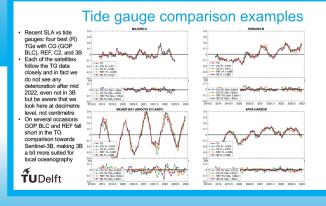




CryoSat-2 tide gauge comparison

- o compare tide gauge (TG) data with altimeter data, all standard corrections are applied to GOP BLC (CG) nd J2/J3/6A (REF): incl. GOT410 total ocean tide, CNESCLS15 MSS and the high frequency part of DAC
- The altimetric SLA is gridded to monthly solutions: Gaussian distance-weighted gridding: σ = 0.75°, cut-off 3σ , spacing 0.25° and then interpolated to the TG locations with bicubic grdtrack routine from GMT
- PSMSL TGs have been selected from 2010 2022: this reduces the data set from 1573 gauges to 565
- Next, only TGs are considered with correlation with altimetric SLA R > 0.5, sd σ < 12 cm, and SLA = TG absolute slope < 6 mm/yr. Excluding TG with large data gaps further reduces the set to 309 TGs (see map)
- For CG and REF the table gives the mean correlation, standard deviation, and tilt (ICE-5G GIA corrected) with respect to the tide gauges
- The 0.17 mm/yr tilt between TG and CG, shows that BLC is perfectly stable and suited to be an ECV

	Correlation [-]	st. dev. [cm]	tilt [mm/yr]
CG –TG	0.82	5.7	0.17
REF – TG	0.84	4.9	-0.11
mean GIA			-0.27



CG-J2 (all) CG-J3 (all) CG-J2 (all) CG-J3 (all) CG-J2 (all) CG-J3 (all) CG-J3 (all)

CG-J2 (M) CG-J3 (M) CG-J3 (M) CG-J3 (M)

WWWWW

2016 2017 2018 2019 2020 2021 20

Acknowledgments: This research was funded by the European Space Agency ESRIN EOP-GMQ contract 4000112740. We thank Remko Scharroo from EUMETSAT and Eric Leuliette from NOAA for their continued maintenance of the Radar Altimeter Database System RADS, and NOC/NERC for maintaining the PSMSL tide gauge data service.

