A Study on the Effectiveness of GNSS Buoys at Harvest

Andy Wu¹, Shailen Desai¹, Bruce Haines¹

¹Jet Propulsion Laboratory, California Institute of Technology

2023 Ocean Surface Topography Science Team Meeting, San Juan, Puerto Rico

Overview

- Tide gauge at the Harvest Platform has been used as an altimetry reference for over three decades
- GNSS buoy was dispatched prior to full decommissioning of the platform to evaluate as potential replacements
- There was an eight month (March 2022 Nov 2022) overlap between tide gauge and buoy
- Attitude data was available for the buoy from March 2022 July 2022

Buoy Line Tension

Sea State Bias (SSB) Correction

- Significant wave height (SWH) estimated as $4 \times \sigma$ (SSH)
- Sea state bias estimated by fitting model to SSH
 - $SSH(t) = \sum_{k=0}^{3} a_k t^k + Ocean Tides(t) + cSWH(t)$

- Mean of height differences within 0.5 m SWH bins before SSB correction (L) and after SSB correction (R)
- SSB for buoy and tide gauge estimated independently Buoy SSB ~ 1.92% SWH, Tide Gauge SSB ~ 0.59% SWH

Data Processing Flow

ε⁰

e -1

- Two models load cell (sensor) and linear fit (estimated)
- Load Cell Model 0.0254 m/105 lb-f correction based on the load cell measurement
- Data was leveled by removing three piecewise biases and a linear term to make it consistent with other buoy campaigns

 \geq 0 – 3.3 cm from center to edge of circle

July, Combined GPS + Galileo Solution

No attitude or antenna map, linear line tension model

Case σ (Buoy – Tide Gauge) [cm]	Nominal	Geoid	Geoid + Line Tension	Geoid + Line Tension + SSB	3-σ Outliers Removed
Baseline	2.127	2.065	1.986	1.942	0%
Combined G+E Solution	1.874	1.810	1.729	1.665	0%
Baseline 3-σ outlier removal	1.978	1.865	1.853	1.816	1.33%
Combined G+E Solution 3-σ outlier removal	1.665	1.598	1.653	1.611	0.67%

Observations and Conclusions

- A combined GPS + Galileo solution is a significant improvement (>2.5 mm) over the nominal GPS-only solution
- The SSB correction can improve agreement by up to 2 mm Potentially refine using Lagrangian Mean Height $3-\sigma$ outlier removal on the difference removed ~2% of data, but improved agreement by up to 2.5 mm

- Monthly σ = 0.2 cm

- Data binned to 0.5 m SWH
- Agreement depends \bullet on SWH cutoff
- 3.5 m SWH threshold \bullet retained > 97% data
- Daily Difference between tide gauge and buoy heights
- Linear fit through data:
 - Mean: -2.5 ± 0.1 cm
 - StdDev: 1 cm
- \succ Trend: -5 ± 3 mm/year
- > Additional research is required to eliminate these outliers without relying on both sensors
- 5 mm/year drift needs further investigation \bullet
- Adding attitude data/calibration map did not significantly change results from baseline case
- GNSS buoys show promise as a method for measuring water level in areas without dedicated tide gauges

D 3.2

Contact: Andy.Wu@jpl.nasa.gov Jet Propulsion Laboratory This research was carried out at the Jet Propulsion Laboratory and the California Institute of Technology under a contract with California Institute of Technology the National Aeronautics and Space Administration. © 2023 California Institute of Technology.