2023 OSTST Meeting, November 7-12, 2023, Puerto Rico, USA

Satellite Altimetry Sea Level Height and Related *In Situ* DART® and Tide Gauge Products Stewardship and Comparison Study in NOAA/NESDIS/NCEI

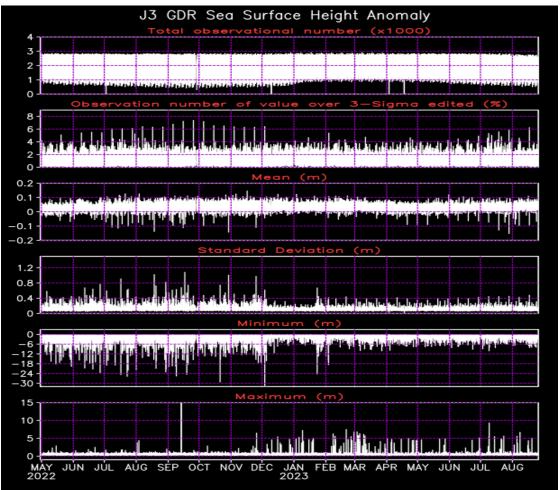
> Yongsheng Zhang^{1,2}, George Mungov^{1,3} Xuepeng Zhao¹, Huai-Min Zhang¹

¹NOAA/NESDIS/NCEI ²University of Maryland ESSIC/CISESS ³University of Colorado/CIRES Boulder

National Centers for Environmental Information (NCEI)

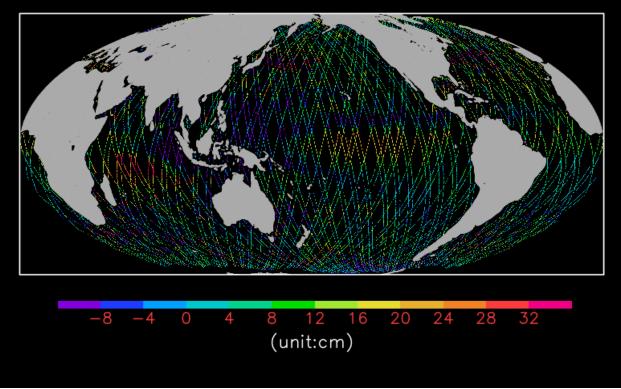
ND ATMOS

NOAA


NCEI Jason 2/3 Scientific Data Stewardship

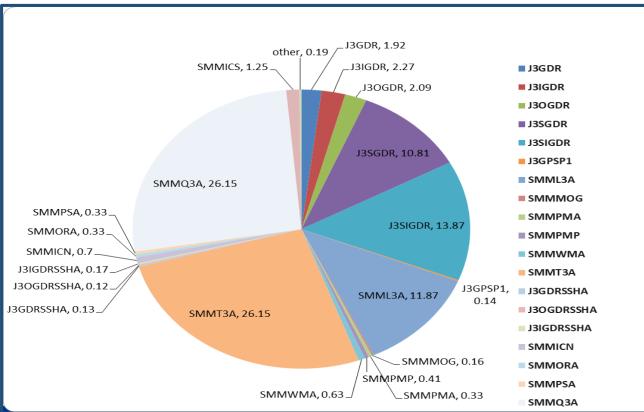
- 1. NCEI-MD provides NOAA official Scientific Data Stewardship for the OSTM/Jason-2 and Jason-3 products, supporting ingest, archival storage, and basic access to the mission level-2 and related products through the NOAA Comprehensive Large Array-data Stewardship System (CLASS).
- 2. NCEI-MD instituted a mirror service to provide the public with all level-2 OGDR/IGDR/GDRs through FTP, HTTP, OPeNDAP, and THREDDS servers.
- 3. NCEI-MD develops tools to enable the automated collection of quality descriptive statistics in each granule in order to monitor the data quality and track the metadata attributes
- 4. NCEI-MD produces quality-improved binned Level-3 data in real-time from the mission L2 IGDR and GDR and provides them to the public via user-friendly interfaces.
- 5. NCEI-MD also perform monthly archiving data reconciliation between NOAA CLASS and CNES/SIPAD to ensure both data centers fully archive the mission level-2 and related products.

https://www.ncei.noaa.gov/products/jason-satellite-products



NCEI Data Quality mornitoing on IGDR/GDR

Data Quality Assurance statistics of SSHA in each data file, Jason-3 GDR (Version-F) J3 IGDR Sea Surface Height Anomaly, Cycle 356


2023.10.26 - 2023.10.31

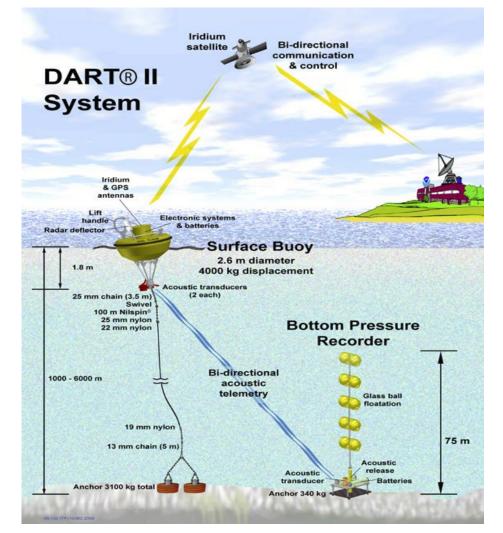
Cycle-mean SSH from Jason-3 IGDR (Version-F).

NCEI Jason-3 Archive Annual Report

CLASS Archive files Statistic: Total =1794.01 GB Period: 2022-03-01 to 2023-02-28

Reconciliation Data File Report NOAA/CLASS vs SIPAD

FileType	FileMask	CLASS	SIPAD	C-Miss	S-Miss	Check
J3AVE	AJ3_AL1	0	0	0	0	0
PJ3FI1	PJ3_FI1	344	344	0	0	0
PJ3RI1	PJ3_RI1	344	344	0	0	0
J3CH1	PJ3_CH1	0	0	0	0	0
J3ION	JA3_ION	1823	1819	5	4	10
J3MBE	AJ3_ANT	12	11	0	0	2
J3MOE	JA3_POR_AXV	365	363	0	0	9
J3ORF	JA3_ORF	351	115	0	0	2
J3OS1	JA3_OS1	362	119	0	0	3
J3POE	JA3_VOR	387	387	0	0	0
J3PPF	JA3_PPF_AXV	365	363	0	0	3
J3VPF	JA3_VPF	387	385	0	0	3
SMMAPP	SMM_APP	1825	1819	6	2	6
SMMPMP	SMM_PMP	1825	1819	5	0	5
SMMPRP	SMM_PRP	1825	1819	5	0	5
SMMUWP	SMM_UWP	1825	1819	5	0	5
SMMVWP	SMM_VWP	1825	1819	5	0	5
SMMWEP	SMM_WEP	1825	1819	5	0	5
SMMDOR	SMM_DOR	0	0	0	0	0
SMML3A	SMM_L3A	878	0	0	0	0
SMMQ4A	SMM_Q3A	858	0	0	0	0
SMMMOG	SMM_MOG_AXV	1460	1452	0	0	0
SMMPMA	SMM_PMA	1462	1454	0	0	0
SMMPMP	SMM_PMP	1825	1820	0	0	0
SMMT3A	SMM_T3A	858	0	0	0	0
SMMWMA	SMM_WMA	380	0	0	0	0
SMMICN	SMM_ICN	873	0	0	0	0
SMMICS	SMM_ICS	3204	0	0	0	0
SMMORA	SMM_ORA	1473	0	0	0	0
SMMSST	SMM_SST	376	0	0	0	0
SMMVPSA	SMM_PSA	1469	0	0	0	0
J3GDR	JA3_GPN	50471	8226	0	0	0
J3GDRSSHA	JA3_GPR	50471	8226	0	0	0
J3IGDR	JA3_IPN	8876	8872	16	0	28
J3IGDRSSHA	JA3_IPR	8876	8872	16	0	28
J3OGDR	JA3_OPN	4261	4271	5	2	6
J3OGDRSSHA	JA3_OPR	4261	4471	5	2	6
J3SGDR	JA3_GPS_	54891	12629	0	0	0
J3SIGDR	JA3_IPS	8876	8872	16	0	28
J3GPSP1	JA3_GPSP1	4420	4403	4	0	22
TOTALS 2022-03-01 to 2023-02-28		226209	88532	98	10	181
Percent missing				0.043%	0.11%	


In Situ DART® and Tide Gauge Products Stewardship

The NCEI-CO hosts an archive of high-resolution waterlevel data as part of the US National Tsunami Hazards Mitigation Program (NTHMP).

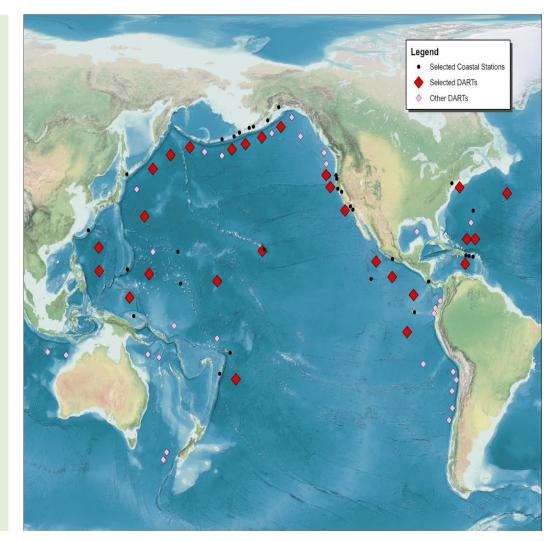
 NOAA/NWS Deep-ocean Assessment and Reporting of Tsunamis (DART[®]) records from more than 300 deployments at 39 US and several international stations covering a period for 20+ years,

- 240+ high-resolution tide gauge records from NOAA "tsunamiready" network maintained by the NOAA/NOS Center for Operational Oceanographic Products and Services (CO-OPS) mostly starting from 2008,

- 30+ high-resolution water level data from the regional networks of the Pacific Tsunami Warning Center (PTWC), and the National Tsunami Warning Center (NTWC) for the recent 10 years.

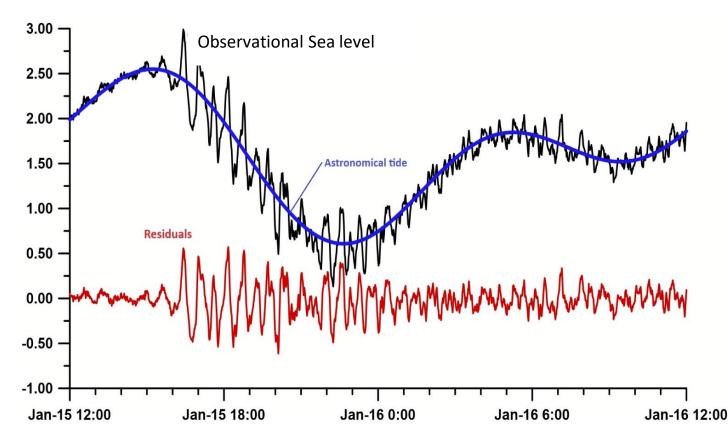
https://www.ngdc.noaa.gov/hazard/tide.shtml

https://www.ngdc.noaa.gov/hazard/DARTData.shtml

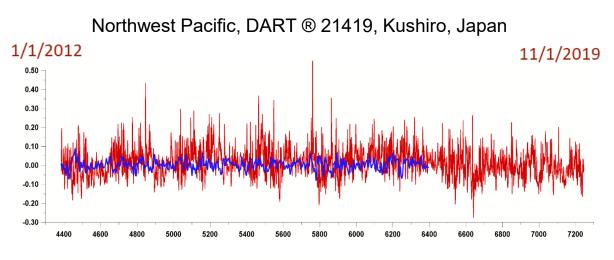

Comparison between satellite altimeter and DART® bottom pressure & coastal tide gauge data

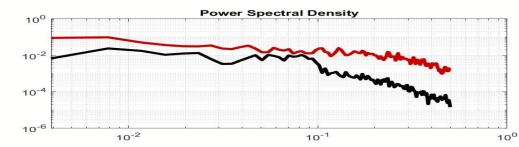
Satellite Data

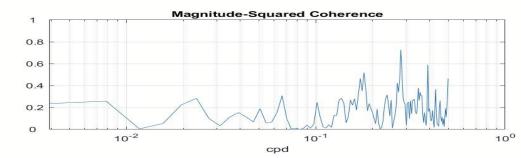
Multi-satellite daily merged sea surface height anomalies (SSHA), picked from the NOAA/STAR/SLA 0.25-degree gridded optimal interpolated daily sea level anomalies, obtained from all available satellite missions.

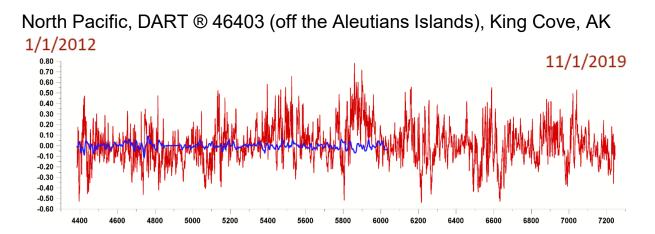

In Situ Data

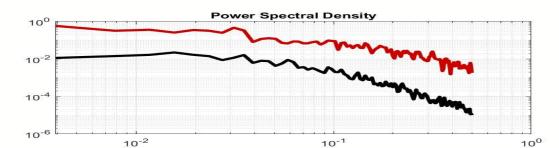
- 28 DART[®] stations in the Pacific and Atlantic, the Gulf of Mexico, and the Caribbean Sea.
- 38 coastal and island tide gauge records from the NOAA CO-OPS network, from the UH Sea Level Center (UHSLC), and UNESCO IOC Sea Level Station Monitoring Facility.

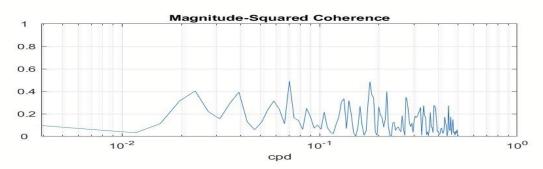

Residuals: Difference between the observations and the astronomical tidal component

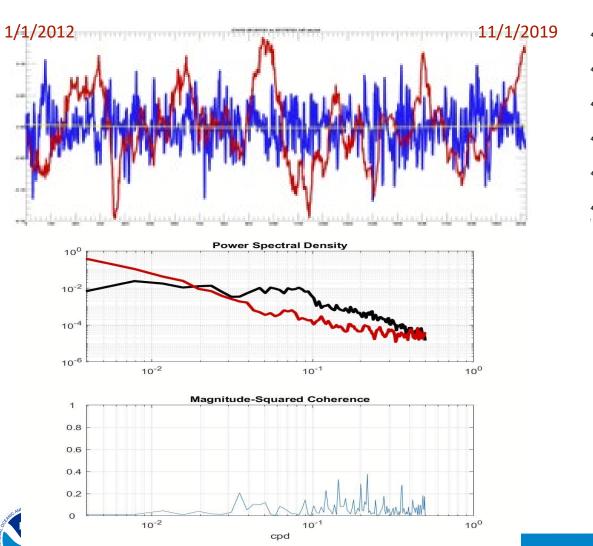


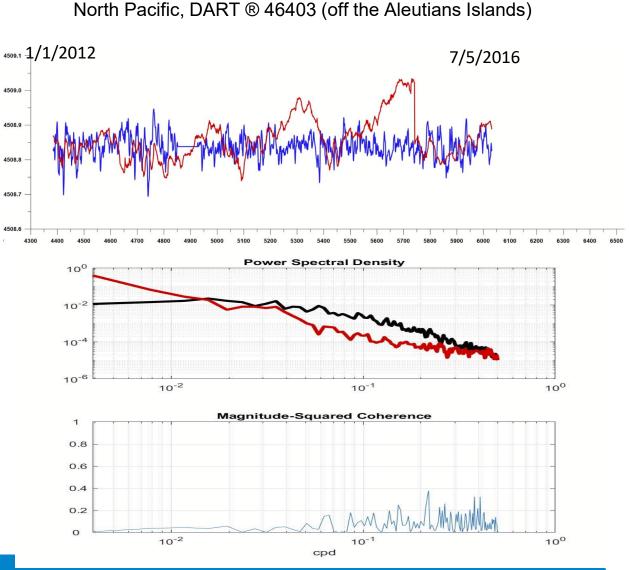

Arrival of the tsunami wave generated by Tonga volcano eruption on 2022-01-15 at Santa Monica, California The sequence of processing the DART[®] data: bottom pressure data (BPD) in psi is converted to water heights, quality controlled, detided, and used as a daily mean "residuals" to match the relevant SSHA and the observations at the tide gauges. All DART[®] water height and tide gauge sea level data are processed at the same way.




Comparison between DART and Coastal Station Data in areas with strong atmospheric dynamics

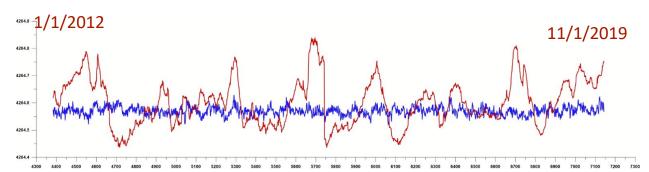


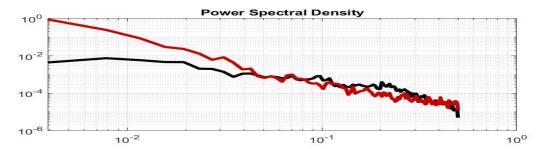


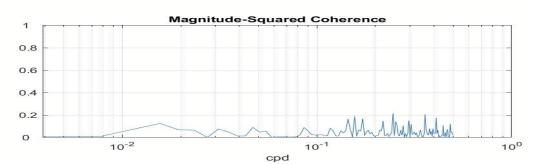


National Centers for Environmental Information (NCEI)

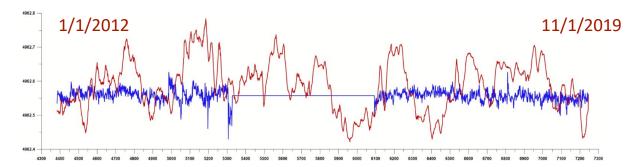
Comparison between DART and altimeter data in areas with strong atmospheric dynamics

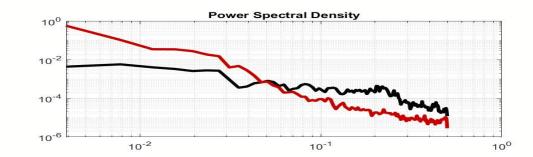

Northwest Pacific: DART ® 21415 (off the coasts of Japan)

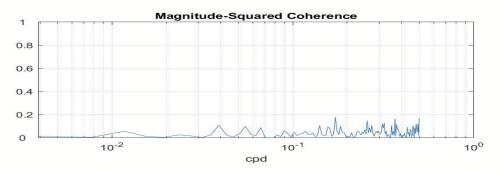



National Centers for Environmental Information (NCEI)

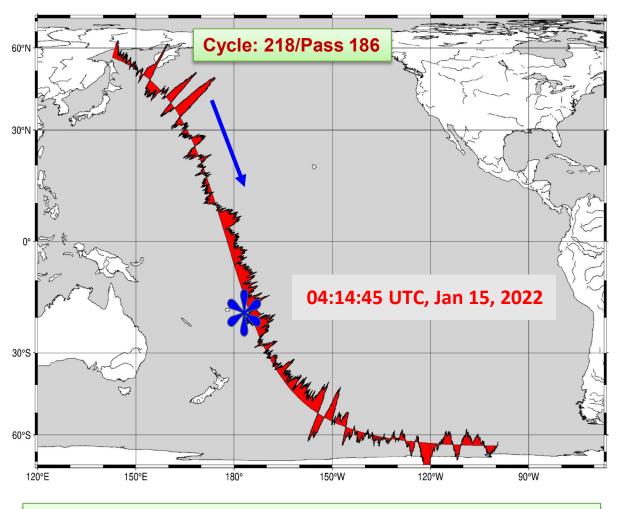
Time series, power spectra, and coherences between DART and altimeter data in areas with low atmospheric dynamics

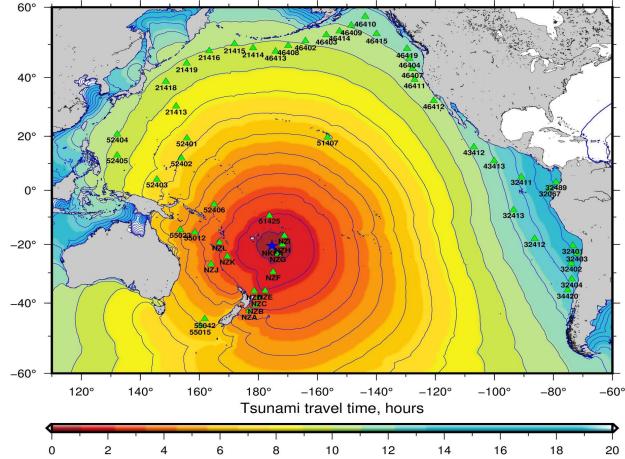

Central Pacific, DART 46411 (150 NM W of Mendocino Bay, CA)





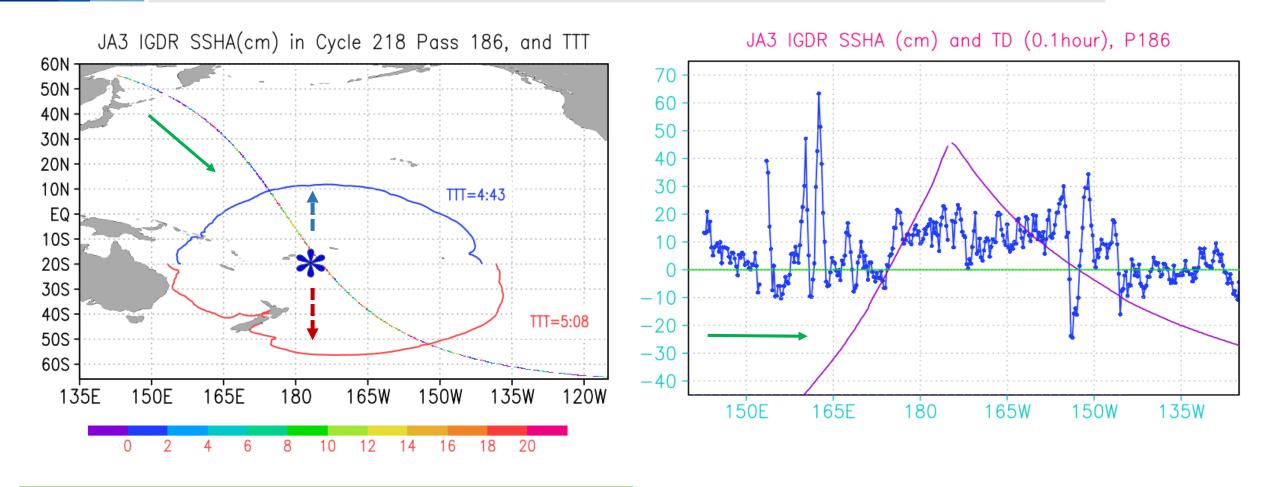
East Pacific, DART 51425 (370 NM NW of Apia, Samoa)


1/1/2012


Conclusions

- The DART® SSHA agree with the altimeter SSHA and coastal or island tide gauge records in regions with strong winds with a significant periods within 2 to 10 days during passing cyclones.
- These regions include the North Pacific Ocean along Japan, the Aleutian Islands and Alaska, the Hawaii Islands, the North West Atlantic along the US East Coast, and the Caribbean Basin.
- Also in these regions DART® variations tend to display the variations of open-ocean water level with a frequency band less than 24 hours.
- For long-period variations, DART® does not record the long-period variations more than 10 to 15 days due to the plastic deformations of the alloy containers with the BPR sensors on the ocean floor.

Tracking Tonga Tsunami Wave with Modelling and Jason3 SSHA



DART stations (green triangles) and theoretical tsunami (long wave) travel time (TTT) map. (Source: Gusman, A.R. and Roger, J., GNS Science and NCEI/OGSSD/GSB)

Jason-3 IGDR SSHA for cycle 218 and pass 186 Time Period: 2022.01.15: 08:28m – 09:24 UTC

Tracking Tonga Tsunami Wave

Jason-3 IGDR SSHA and TTT contours at and 5h08m. 4h43m Y: Time Difference between Jason3 IGDR time and TTT (0.1 hour) & IGDR SLA values (cm).X: longitude

Contact

- Yongsheng.Zhang@noaa.gov Tonga Tsunami Wave Tracking
- » George.Mungov@noaa.gov Comparison among altimeter, DART[®] bottom pressure, and

coastal tide gauge data

Acknowledgements

- > NOAA/NESDIS/STAR/SLA: Level-3 SSHA data.
- > NOAA/PMEL and NOAA/NDBC: DART[®] network.
- > NOAA/NOS/CO-OPS: tsunami-ready tide gauges data.
- > UHSLC UH Sea Level Center and the UNESCO IOC Sea Level Station Monitoring Facility.
- > UNAM, Mexico: Acapulco tide gauge data.
- > HOM, Brest, France: Clipperton Island tide gauge data.
- New Zealand GNS Science (Gusman, A.R. & Roger, J.): tsunami travel time (TTT) map based on Geoware software.

