Extending the climate sea-level data record with Sentinel-6-MF: uncertainty and stability requirements

> M. Ablain, A. Barnoud (Magellium), B. Meyssignac (LEGOS), A. Guérou (CLS)

enhanced ocean altimetry and climate monitoring from space

Virtual OSTST | 21-22 March 2022

→ Sea-Level stability requirements for climate-driven studies

→ State of the art on the sea level rise uncertainties derived from altimetry measurements

→ Key issues for extending the climate sea level data record with Sentinel 6-MF

→ Sea Level stability requirements stability in GCOS (2011) are :

Variable/ Parameter	Horizontal Resolution	Vertical Resolution	Temporal Resolution	Accuracy	Stability
Global mean sea level	50km	N/A	10 days	2-4mm (global mean); 1 cm over a grid mesh	<0.3mm/yr (global mean)
Regional Sea Level	25km	N/A	Weekly	1cm (over grid mesh of 50-100km)	<1mm/yr (for grid mesh of 50-100km)

→ More stringent sea level stability requirements endorsed by C3S (Copernicus) :

Description	Spatial resolution	Stability			
Global mean sea level	Not applicable	trend : < 0.1 mm/yr (over more than a decade)			
Gibbar mean sea lever		acceleration : <0.05 mm/yr ²			
Regional sea level	50-100km	trend: < 0.5 mm/yr over more than a decade			

→ Meyssignac et al., OSTST, 2019 : How accurate is accurate enough ?

Climate driven studies	SL trend uncertainties				
Climate-driven studies	Global scale	Regional scale			
Closing the sea level budget and identifying the missing contributions	< 0.3 to 0.1 mm/yr	< 1 mm/yr			
Constraining projections of future sea level rise and its contributions	< 0.2 mm/yr	< 0.5 mm/yr			
Estimating the Earth energy imbalance and constraining the energy budget of the Earth	< 0.1 mm/yr	< 0.5 mm/yr			

NB: All uncertainties in trends and accelerations are presented in 90% CL

→ Meyssignac et al., OSTST, 2019 : How accurate is accurate enough ?

Climate driven studies	SL trend uncertainties				
Climate-driven studies	Global scale	Regional scale			
Closing the sea level budget and identifying the missing contributions	< 0.3 to 0.1 mm/yr	< 1 mm/yr			
Constraining projections of future sea level rise and its contributions	< 0.2 mm/yr	< 0.5 mm/yr			
Estimating the Earth energy imbalance and constraining the energy budget of the Earth	< 0.1 mm/yr	< 0.5 mm/yr			

NB: All uncertainties in trends and accelerations are presented in 90% CL

Earth Energy Imbalance

Mean: + 1.03 \pm 0.19 W. m^{-2}

From Marti et al. (2021)

© ESA, CNES, CNRS-LEGOS, Magellium, 2020

→ Sea-Level stability requirements for climate-driven studies

→ State of the art on the sea level rise uncertainties derived from altimetry measurements

→ Key issues for extending the climate sea level data record with Sentinel 6-MF

→ Maturity of the Sea Level data record

- Very good stability:
 - GCOS requirements are reached at global and local scales over a period of ~20 years (2000 - 2020)
- Advanced estimate of the associated uncertainty:
 - Error description including time correlation
 - Adapted Mathematical formalism
 - Verified by comparison with independent data (e.g. global tide-gauge network, sea level budget closure)

SL trend uncertainties: state of the art

Source of errors	Type of error	Uncertainty level (at 1- σ)
High frequency errors: altimeter noise, geophysical corrections, orbits	Correlated errors $(\lambda = 2 \text{ months})$	σ = 1.7 mm for TOPEX period / 1.5 mm for Jason-1 period / 1.2 mm for Jason-2/3 period
Medium frequency errors: geophysical corrections, orbits	Correlated errors (λ = 1 year)	σ = 1.3 mm for TOPEX period / 1.2 mm for Jason-1 period / 1 mm for Jason-2/3 period.
Low frequency errors: wet troposphere correction	Correlated errors (λ = 5 years)	σ = 1.1 mm over all the period (\Leftrightarrow 0.2 mm/yr for 5 years)
Low frequency errors: orbits (Gravity fields)	Correlated errors $(\lambda = 10 \text{ years})$	σ = 1.12 mm over TOPEX period and 0.5 mm over Jason period (\Leftrightarrow 0.05 mm/yr for 10 years)
Altimeter instabilities	Drift error	δ = 0.7 mm/yr on TOPEX-A period δ = 0.1 mm/yr on TOPEX-B period
Long-term drift errors: orbit (ITRF) and GIA	Drift error	δ = 0.12 mm/yr over all the period
GMSL offset errors to link altimetry missions together	Offset error	σ = 2 mm for TP-A/TP-B and 0.5 mm for TP-B/J1, J1/J2, J2/J3.

Sea level rise uncertainty budget at global scale (Ablain et al., 2019)

→ Sea level trend uncertainties

♦ 10 yr: ≥ 0.45 mm/yr
♦ 20 yr: ≥ 0.25 mm/yr

- → Sea level acceleration uncertainties:
 - 10 yr: \geq 0.20 mm/yr²
 - ◆ 20 yr: ≥ 0.08 mm/yr²

Ablain et al. (2019) updated over 29 years

SL trend uncertainties: state of the art

Source of errors	Type of error	Uncertainty level (at 1- σ)
High frequency noise from orbit determination	Correlated errors $(\lambda = 1 \text{ year})$	σ location dependent (8 mm in open ocean)
Low frequency noise from the wet tropospheric correction	Correlated errors $(\lambda = 10 \text{ years})$	σ location dependent (3 mm in tropical areas)
Orbit determination	Drift error	δ = 0.33 mm/yr
GIA correction	Drift error	δ location dependent (0.3 mm/yr in Hudson Bay)
Inter-mission TP-A/B and TP-B/J1 offset	Offset error	σ = 10 mm
Inter-mission J1/J2 and J2/J3 offset	Offset error	σ = 6 mm

Sea level rise uncertainty budget at local scales (Prandi et al., 2021)

SL trend uncertainties: state of the art

period : 1993-2019

- → Sea level trend uncertainties over 26 years :
 - 0.8 mm/yr (average)
 - until 1.2 mm/yr locally

- → Sea level acceleration uncertainties over 26 years :
 - 0.06 mm/yr² (average)
 - until 0.12 mm/yr² locally

Prandi et al. (2021)

→ Sea-Level stability requirements for climate-driven studies

→ State of the art on the sea level rise uncertainties derived from altimetry measurements

→ Key issues for extending the climate sea level data record with Sentinel 6-MF

Extending sea level data record with S6-MF

- → SL climate data record to be extended with S6-MF (Jason-3 moved on 7th of April)
- → Main objective: assess and verify the SL trend uncertainties with S6-MF

Contribution of each source of errors to the total GMSL trend uncertainty

From Guérou et al., 2022 (in prep.)

Extending sea level data record with S6-MF

→ Target for S6-MF to verify the Jason-2/Jason-3 SL rise uncertainty budget

	S6-MF errors to be verified	Jason-2/Jason-3 sea level r	ise uncertainty budget		
by or	der of their global contribution (in %)	Global scale	Local scale		
(~40 %)	Wet troposphere correction stability	δ < 0.2 mm/yr over 5 years	Location dependent		
(~30 %)	Medium frequency errors (altimeter, geophysical corrections, orbits)	$\sigma \le 1 \text{ mm}$ for timescales between 2 months and 1 year	Location dependent		
(~14 %)	Long-term orbit error (ITRF and Gravity fields)	≤ 0.1 mm/year	Location dependent (max ≤1.0 mm/yr over 10 years)		
(~10 %) Low frequency errors(altimeter, geophysical corrections, orbits)		$\sigma \le 1$ mm for timescales lower than 2 months	Location dependent		
(< 3 %)	GMSL offset - J3A and S6-MF	$\sigma \le 0.5 \text{ mm}$	$\sigma \le 6 \text{ mm}$		
(≅ 0%)	Long -term stability of altimeter parameters	$\delta \cong 0$	$\delta \cong 0$		

Continued,

from space

enhanced ocean altimetry and climate monitoring

Use of water vapor CDR to reduce WTC stability uncertainties (Barnoud et al., in prep., SALP):

→ WTC drift uncertainty is reduced from 0.2 mm/yr to 0.05 mm/yr over a 5-year period

1 - Better	Wet Troposphere Correction
knowledge of the errors and their uncertainties	Altimeter parameters and derived corrections

Continued,

enhanced ocean altimetry and climate monitoring from space

Main objective of ESA ASELSU project: Improve our knowledge of time-correlated altimeter errors by propagating them from altimeter LEVEL 0 to SL ECV

Extending sea level data record with S6-MF

→ What is needed to bring S6-MF SL rise uncertainty closer to the scientific sea level stability requirements ?
Jason-1 GDRD - 10-day GRACE fields, cycles 21-509

1 - Better	Wet Troposphere Correction
knowledge of the errors and their uncertainties	Altimeter parameters and derived corrections
	Orbit calculation

enhanced ocean altimetry and climate monitoring

from space

Couhert et al. (2015)

1 - Better	Wet Troposphere Correction				
knowledge of the errors and their uncertainties	Altimeter parameters and derived corrections				
	Orbit calculation				
2 - Better knowledge of the accuracy of the methods					

enhanced ocean altimetry and climate monitoring

from space

1 - Better knowledge of the errors and their uncertainties	Wet Troposphere Correction	1.1 1 0.9	•					1 1					PEX	A&E A B	3	
	Altimeter parameters and derived corrections	Drift (mm/yr) 0.7 0.0 0.3 0.3 0.4	0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 -			- 0	1 1 1	•	· 0-				Jason-1 Jason-2 Ensemble			
	Orbit calculation	0.2 - 0.1 -														
2 - Better knowledge of the accuracy of the methods	From conventional methods		3	4	5	6	Data	7 8 durati	9 ion (ye	10 ears)	12	14	16	18 2	20 2	
		 Drift uncertainty between Altimetry and T gauge comparison from C. Watson et al 0.5 mm/yr at 10 years (90% CL) 					d I ∶ al . .)	ide ., 2	; 202	1:						

Continued, enhanced ocean altimetry and climate monitoring

from space

1 - Better	Wet Troposphere Correction	2.5 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5
 knowledge of the errors and their uncertainties 2 - Better knowledge of the accuracy of the methods 	Altimeter parameters and derived corrections	E 2.0 Box Jess (degrees) 1.5 6 1.5 9 1.0 30 1.0 30 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.
	Orbit calculation	
	From conventional methods	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$
	From new approaches	et al., (2021) : - global < 0.2 mm/yr at 5 years (90% CL) - regional < 0.5 mm/yr at 5 years (90% CL)

- → Assessing and verifying the Jason-2/Jason-3 SL uncertainty budget with S6-MF:
 - During the tandem phase with Jason-3 : objective of the Virtual OSTST
 - Continuously after the tandem phase by comparison with other altimeter missions and insitu data
- → Improving the current the SL trend uncertainties with S6-MF is possible !
 - Thanks to a better knowledge of the errors and their uncertainties
 - Thanks to a better knowledge of the accuracy of the methods

→ Work is already on-going…

- Update of the current SL rise uncertainty budget is coming: SALP project (CNES)
- Use of Wet-Vapor CDR to reduce WTC stability uncertainties: SALP project (CNES)
- Improving knowledge of altimeter errors and method uncertainties: ASELSU and S6-JTEX projects (ESA), SALP project (CNES)
- → ...very helpful to prepare requirements of future altimetry missions (S6-NG)

Thank you for your attention

contact : michael.ablain@magellium.fr

