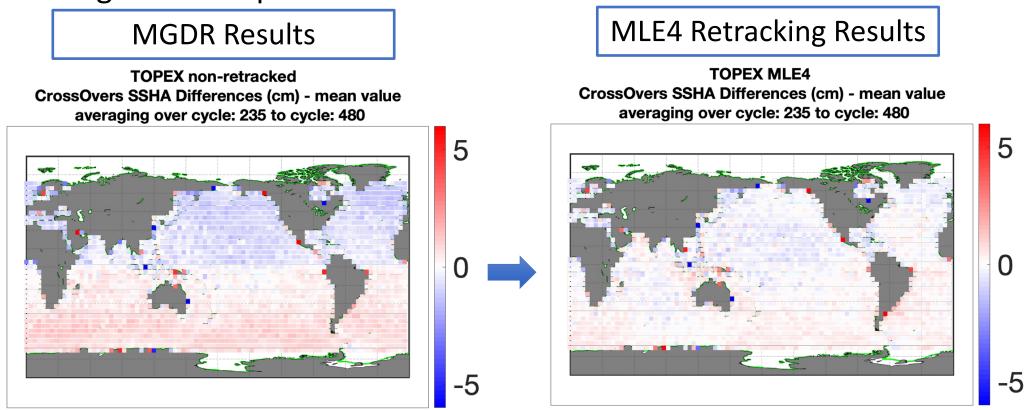


Jet Propulsion Laboratory California Institute of Technology

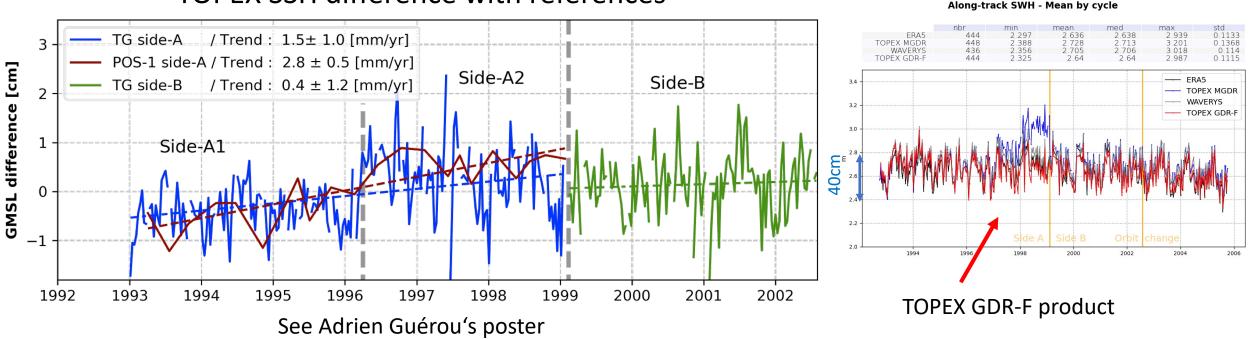
TOPEX/POSEIDON Reprocessing



Jean-Damien Desjonquères¹ and Francois Bignalet-Cazalet² On behalf of NASA/JPL and CNES/CLS Teams Acknowledgements: NASA GSFC, U. Colorado, U. New Hampshire

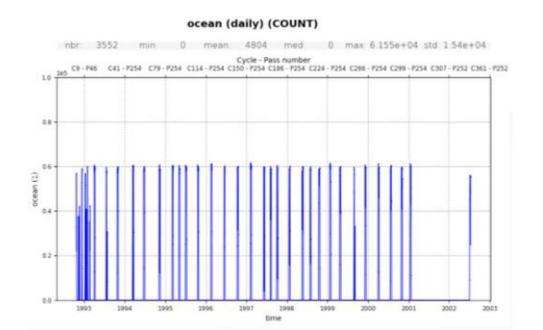
(1) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA / (2) Centre National d'Etudes Spatiales, Toulouse, France
(3) Collecte Localisation Satellites, Toulouse, France
© 2022 California Institute of Technology. Government sponsorship acknowledged
OSTST Venice, 2022

TOPEX Reprocessing


- Overall improvement of the data quality
 - Reduction of hemispheric bias
 - Synchronization of echo waveforms and altimeter tracker data
 - Use of MLE-4 to accommodate platform mis-pointing events
 - Similar crossovers performance as Jason missions
- Understanding the Wallops correction.

For Climate Studies

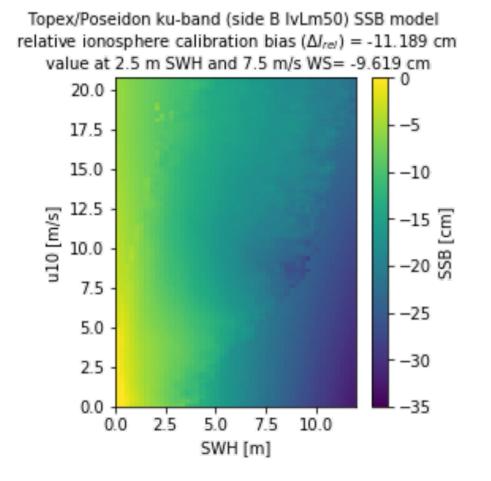
- SWH is much more stable
- Removed contribution of Cal-1 Range correction from retracking estimates
 - After analysis indicated instrument anomaly
 - Consistent with with Beckley et al., 2017 (i.e., Cal-1 range correction effectively not be applied to Side A)
- External validation shows improvement in agreement with Tide Gauges and Poseidon
- Recommend climate studies treat Side-A timeseries into two sides: A1 and A2
 - Reprocessing exposed jump in calibration data at cycle 130 (April 1, 1996)


TOPEX SSH difference with references

SWH stability improved

Poseidon

- Poseidon was operated ~1 cycle every 10 cycles
- Reprocessed Altimeter Data with MLE-3/4 algorithms (see Helene Roinard's poster)
- Reprocessed data are only slightly differences with MGDR dataset (mostly biased)
- MGDR data are still provided for continuity
- (Retracked data available starting cycle 137)


MLE4 - MGDRupdated -1.707-1.063 18 -0 842 -0.4695 -0.45 2.0 MLE4 - MGDRupdated MLE3 - MGDRupdated 1.5 MLE3 - MLE4 1.0 0.5 E 0.0 -0.5 -1.0-1.5-2.0 1997 1998 2001 1999 2000 time

difference of the cyclic mean of ssha over dedicated valid points

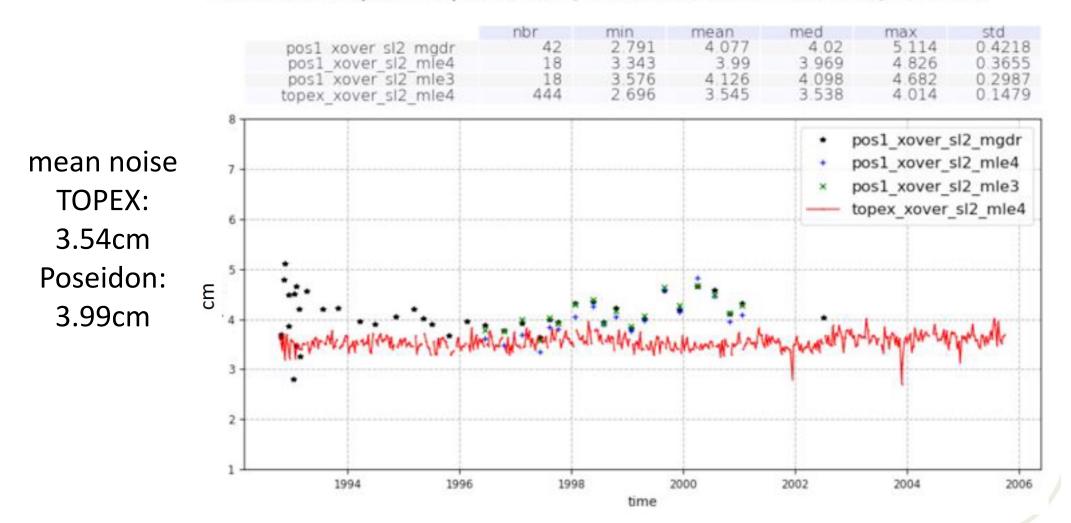
Sea State Bias Solutions

• TOPEX

- Non Parametric 2D Model from U. Colorado, Boulder (A. Putnam et al.)
- Non Parametric 3D Model from U. New Hampshire (H. Feng and D. Vandemark)
 - Using Wave Period (T02) as input in addition to Windspeed and SWH
- Poseidon
 - 4 coefficients Parametric Model (BM4) solutions for MLE-3/4 and MGDR range data

Orbits

- 2 solutions provided
 - NASA Goddard Space Flight Center
 - CNES
- Reference ellipsoid switched to WGS84 (consistent with GDR-F)
 - Height difference between TOPEX ellipsoid and WGS84 ellipsoid provided on product.


Environmental corrections

- GDR-F standard
 - Mean Sea Surface:
 - MSS_CNES-CLS15
 - DTU18
 - Tides
 - FES 2014b
 - GOT4.10c
 - HRET Internal tide (Zaron)

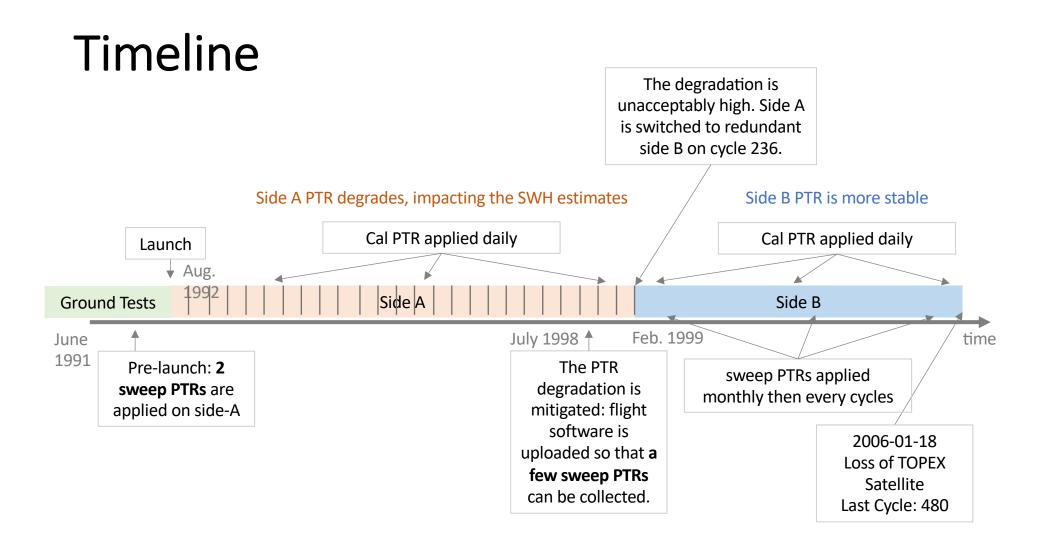
Crossovers performance

Jason like performances

error from SSH difference at crossovers (selection on |latitude|<50°, bathy<-1000m, oceanic variability < 20cm)

Conclusion?

• Long way...


Numerous iterations between all partners involved in this reprocessing

- Poseidon and TOPEX altimeter waveform retracking (+new SSB solutions)
- New GSFC and CNES orbit.
- Radiometer calibration consistent with end-of-mission calibration.
- Update of environmental corrections in line with Jason/Sentinel-6 GDR-F standard
- Products for Poseidon and TOPEX are as close as possible in terms of content and format homogeneity.
 - Remaining differences are inherent to instrument differences
- Data quality has improved with this reprocessing
- Products are fully generated (on the way to PODAAC and Aviso+)/ User Manual is in progress.
- Target Release Date: January, 2023.

Back-up slides

Parameter	Approach
Altimeter measurements (Range, SWH, Sigma0)	TOPEX Side-A: MLE3 and MLE4 retracking.
	TOPEX Side-B: MLE3 and MLE4 retracking.
	POSEIDON: MLE-3 retracking completed.
Orbit	GSFC (dpod2014v04)and CNES (POE-F) ITRF2014 solutions
Radiometer (TMR)	End-of-mission calibration and coastal delays consistent with Enhanced Path Delay Product
Model Dry and Wet	ERA Interim
Sea State Bias	Topex: 2-D SSB (U. Colorado) and 3-D SSB (U. New Hampshire) Poseidon: 4 coefficients Parametric Model (BM4) for MLE-3/4 and MGDR range data
Altimeter Wind Speed	Collard (2005) with sigma0 calibration.
Reference Ellipsoid	WGS84 (height difference with Topex ellipsoid provided)
MSS	CNES/CLS 2015 and DTU18 (w.r.t. WGS84)
Geoid	EGM2008 (w.r.t. WGS84)
MDT	CNES/CLS 2018
Ocean Tides	FES2014b and GOT4.10c
Solid Earth Tide	Cartwright and Edden (1973) (no change)
Internal Tide	Zaron (2019)
Pole Tide	Desai et al. (2015) with linear mean pole (Ries and Desai, 2017).
IB and DAC	ERA-Interim and Mog-2D from ERA-Interim

Geophysical Models consistent with GDR-F Products.

