Splinter Session Summary Quantifying Errors and Uncertainties in Altimetry Data Chairs: Remko Scharroo, Michaël Ablain

→ 6 talks and 5 posters

→ Detection and reduction of altimeter data errors

- Leveraging Sentinel-6A interleaved mode to characterize High Resolution error budget over ocean (E. Cadier, CLS)
- Long-term stability of ionospheric GIM corrections in satellite altimetry data sets (D. Dettmering, DGFI-TUM)

→ Improvement of the uncertainty characterisation

- Uncertainties in SSB modeling and impact on MSL (F. Bignalet-Cazalet, CNES)
- Limiting factors of the altimetry observing system to the Global Mean Sea Level monitoring accuracy (P. Prandi, CLS)
- Improving long term estimates of global mean sea level, global ocean heat content and Earth's energy imbalance using CDR water vapour data (A. Barnoud, Magellium)

New formalism to characterize uncertainties

- Sea level rise uncertainties: insights from a metrological approach (E. Woolliams, NPL)
- Propagating uncertainties and error correlation structures through retracking and sea state bias correction (S. Behnia, NPL)

Error and uncertainties assessment

- In-situ measurements for altimetry cal/val: overview of the H2020 CCVS project (C. Tison, CNES)
- Validation of altimetry by using in situ observations of pressure and acoustic travel time in the Southern Ocean (J. Schroeter, Alfred-Wegener-Institute)
- A Trihedral Corner Reflector to Support Radar Altimeters External Calibration (A. Garcia-Mondejar, isardSAT)

→ Improved sea level error budget provided for the S6-MF HR data (Emeline Cadier, CLS)

⇒ Main outcome:

- Reduction of errors at different time and spatial scales is described, and will be available in next S6-MF L2 product release.
- 5 mm SSH signal error detected in equatorial band 20 years ago and attributed to TOPEX data is very likely due to Jason (1/2/3) altimeter measurements...

Impact	Amplitude	Solution	PDAP Plan
Drift on range	3.4 mm/year on GMSL (POS4-B)	Numerical retracking + Range walk	PB F09 (Q3 2023)
SWH bias (impacting SSHA through SSB)	+30 cm at 2m-wave	NOAA LUT	F10 (end Q4 2023)
.		2D retracking ?	•
Range	2 cm	2D retracking ?	
Red noise on range and SWH	~several cm		
?	?		
	Impact Drift on range SWH bias (impacting SSHA through SSB) Range Red noise on range and SWH ?	ImpactAmplitudeDrift on range3.4 mm/year on GMSL (POS4-B)SWH bias (impacting SSHA through SSB)+30 cm at 2m-waveRange2 cmRed noise on range and SWH~several cm??	ImpactAmplitudeSolutionDrift on range3.4 mm/year on GMSL (POS4-B)Numerical retracking + Range walkSWH bias (impacting SSHA through SSB)+30 cm at 2m-wave 2D retracking ?NOAA LUT 2D retracking ?Range2 cm2D retracking ?Red noise on range and SWH~several cm?

- → Revisiting the long-term stability of ionospheric GIM corrections in satellite altimetry data sets (Denise Dettmering, DGFI-TUM)
 - An updated "scale" coefficient is estimated based on the linear relationship between dual frequency and GIM vertical electron content (using TOPEX, J1, J2, J3):

$$TEC_{ALTI}(t,\lambda,\phi) = TEC_{GIM}(t,\lambda,\phi) \cdot scale + offset$$

⇒ Main outcome :

• to update the GIM ionospheric correction scaling with constant factor determined over full period (0.881 for reference missions)

→ Improvement of the SSB uncertainties characterisation (François Bignalet-Cazalet, CNES)

⇒ Main outcomes :

- Better traceability, description and assessment of the SSB correction uncertainties
- SSB must be evaluated over at least a 3-year period to reduce the effect of the inter-annual sea state ocean variability
- A 0.01 dB/yr stability is required on sigma-0 (assuming a perfect stability SWH)

→ Update of the AVISO GMSL time series and the uncertainty table budget (Plerre Prandi, CLS)

- Minimum of 0.3 mm/yr [90% C.L.] for 22 years of record centered in 2010
- Main limitations to reach the more stringent GMSL stability requirements are coming from ITRF, WTC and short time-correlated uncertainties.
- See Guerou et al., 2022

→ Improvement of the long term estimates of global mean sea level thanks to an alternative WTC correction based on the very stable water vapor CDRs (Anne Barnoud, Magellium)

- reduction the GMSL trend uncertainty until 30 %
- detection of a drift on the Jason-3 radiometer WTC correction of the order of -0.5 mm/yr
- An empirical Jason-3 global mean WTC correction based water vapour CDR the will be very soon available for an independent assessment on AVISO+/ODATIS

GMSL trend variance reduction using a CDR-derived WTC

Development of a new framework to estimate the Sea Level Rise Stability Uncertainty Budget from a metrological approach developed in the FIDUCEO project (Emma Williams and Hannah Cheales, NPL)

⇒ Main outcomes:

- Produced systematic review of current processing assumptions and sources of uncertainty to give comprehensive end-to-end uncertainty analysis for altimeter
- To extend this work to POD and WTC

