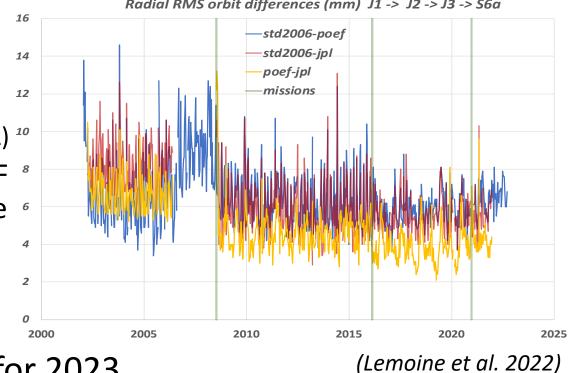
Precision Orbit Determination summary

Sean Bruinsma, Alexandre Couhert, Frank Lemoine

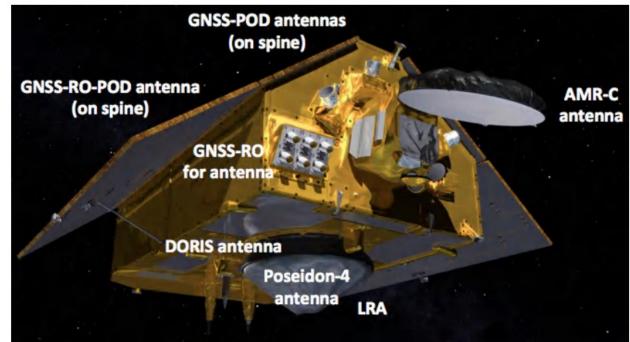
OSTST Meeting, October 31 - November 4, 2022


Contributions

12 orals, 5 posters, 1 forum

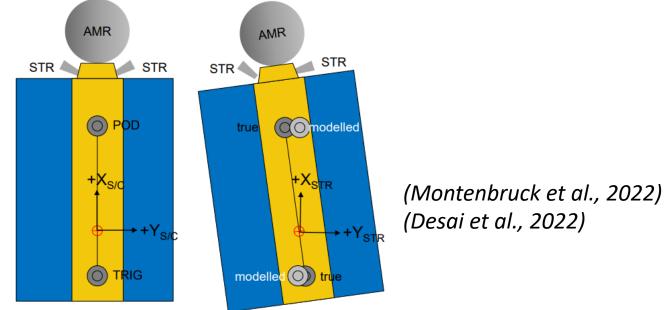
- <u>Reference altimetry missions:</u>
 - CNES: Jason-1 (V. Debout, CS-SI) & Jason-3, Sentinel-6 MF (A. Couhert)
 - **GSFC:** T/P, Jason-1/-2/-3), Sentinel-6 MF (F. Lemoine)
 - JPL: Sentinel-6 MF (S. Desai)
 - ESA: Sentinel-6 MF (F. Gini)
 - CPOD: Sentinel-6 MF (H. Peter)
 - DLR: Sentinel-6 MF (O. Montenbruck)
- <u>Complementary analyses:</u>
 - GPS block IIIA antenna calibration (A. Conrad, CU Boulder)
 - GPS satellite attitude modeling (G. Katsigianni, CLS) & attitude-dependent errors in Jason-3 POD (C. Kobel, AIUB)
 - DORIS satellites for ITRF2020 (H. Capdeville, CLS)
 - SLR systematic errors (D. Arnold, AIUB) & SLR-based reevaluation of the Earth's GM (M. Cherrier, CNES/CLS)
 - Orbit accuracy of the altimetry constellation (S. Rudenko, DGFI-TUM)
 - COST-G Time-Variable Gravity field modeling (A. Jäggi, AIUB)
 - Solar Radiation Pressure modeling (F. Mercier, CNES)
 - Copernicus POD Service (J. Fernandez, GMV)

POD status

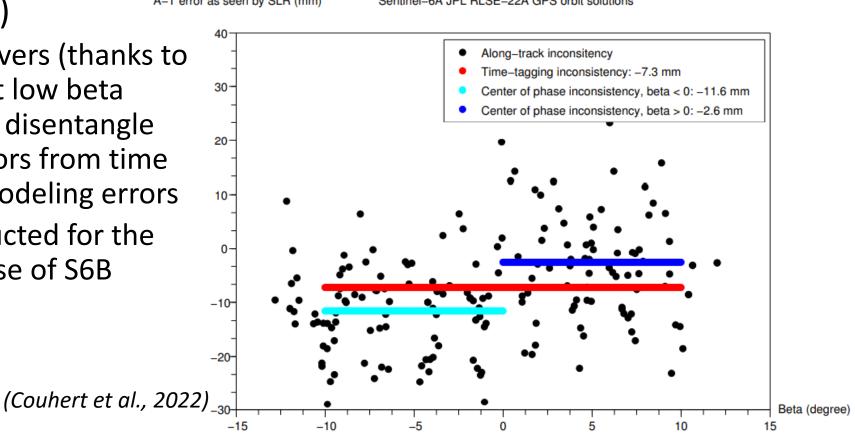

- Copernicus missions POD and CNES/JPL/NASA POD productions are nominal
 In the std2006-poef
 - Current set of orbits agrees well avg. radial RMS:
 - 8-12 mm (J1); 6-8 mm (J2); 5-7 mm (J3 & S6A) 10
 - GSFC STD-2006/JPL RLSE-22A/CNES POE-F[®] continue using ITRF2014 for now until the[®] new ITRF2020 is thoroughly evaluated[®]
 - Jason-1 CNES POE-F reprocessed orbits are now available

• CNES POE-G Standards in preparation for 2023

S6 MF a new laboratory for metrology in orbit

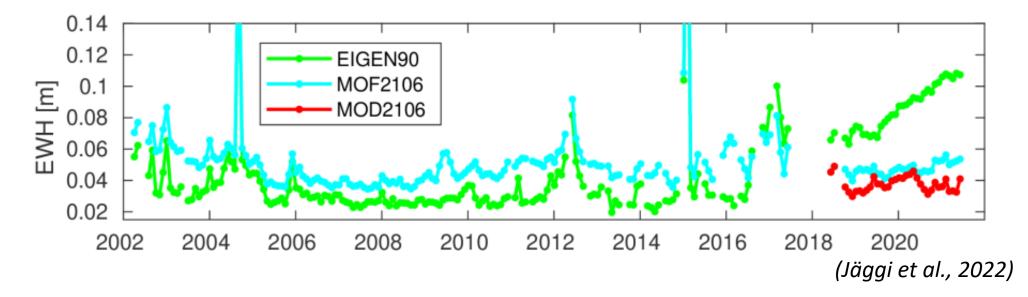

 Thanks to the co-location of POD instruments, GNSS (GPS+Galileo), DORIS and SLR, with the inclusion of three GNSS receivers and antennas, we can verify the stability of the platform with an unprecedented accuracy

Recommendations

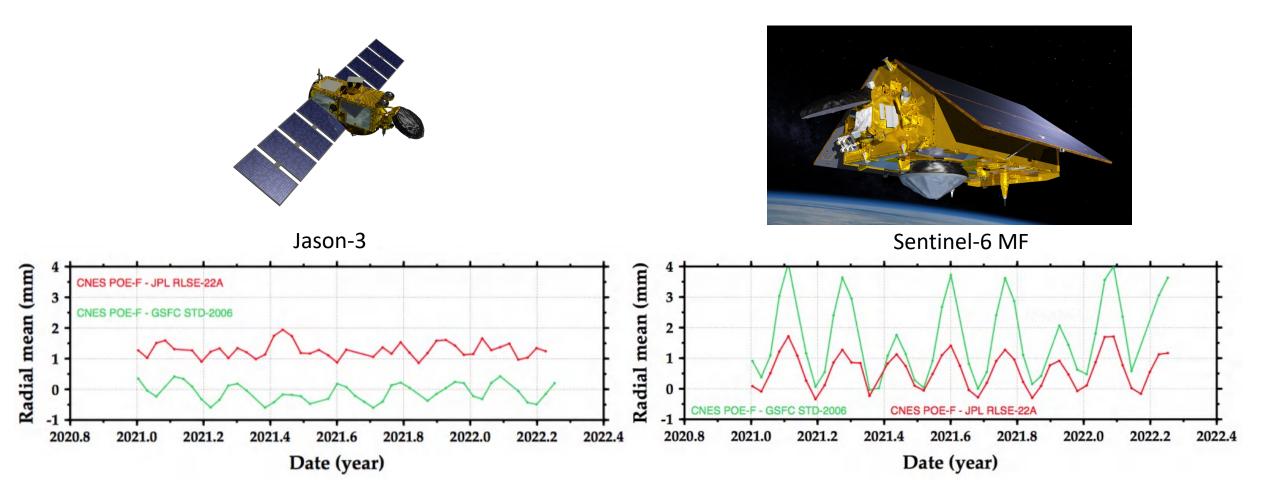

Double-check star sensor alignment matrix for suspected biases on S6 MF

- The metrological of the GNSS data from the three receivers and antennas possibly reveals that there is a 0.43° yaw bias (also pitch?) in the attitude of the spacecraft as defined by the quaternions
 - \Rightarrow Reprocess the quaternions for S6 MF with this correction
 - \Rightarrow Make sure the ground software for S6B avoids a similar problem

Measure S6B TRIG-PODRIX timing bias with signal simulator (e.g. during ground s/c tests)


- TRIG/PODRIX time tag too large/small by 1.2 μs or shared contributions (SLR analysis suggests dominating contribution of TRIG time stamping error)
 - Attitude flip maneuvers (thanks to the project team) at low beta angles are useful to disentangle center of phase errors from time tagging, dynamic modeling errors
 - ⇒ Should be reconducted for the commissioning phase of S6B

Consider use of products from Time-Variable Gravity COST-G Service for POD


• A model fitted to COST-G^{*} GRACE-FO gravity fields (red) reveals large prediction errors for the EIGEN90 model (green) over the last years

=> Its use would be beneficial for the whole altimetry constellation

*COST-G is an international service of the International Association of Geodesy operated by the Astronomical Institute of the University of Bern

Challenges for S6 MF remain with the Radiation Pressure modeling

(Couhert et al., 2022)

Multi-constellation GNSS receivers should be the baseline for future altimeter missions

- In terms of independent SLR residuals RMS, combined Galileo+GPS orbits seem to perform better than individual GPS-only or Galileoonly solutions (to be further assessed)
- It's a vanguard for the proposed ESA Genesis mission which is a multitechnic geodetic mission to improve the ITRF

	Galileo	GPS	Galileo + GPS
SLR res. Mean (mm)	1.4	1.4	1.5
SLR res. RMS (mm)	8.1	9.3	7.8

(Gini et al., 2022)